

## Features

- · High density
  - 30K to 350K usable gates
  - 512 to 5376 macrocells
  - -136 to 520 maximum I/O pins
  - -12 Dedicated Inputs including 4 clock pins, 4 global I/O control signal pins and 4 JTAG interface pins for boundary scan & reconfigurability
- Embedded Memory
  - 80K to 840K bits embedded SRAM
    - 64K to 672K bits of (single port) Cluster memory
    - 16K to 168K bits of (dual port) Channel memory
- High speed 233-MHz in-system operation
- AnyVolt<sup>™</sup> interface
  - 3.3V, 2.5V, and 1.8V V<sub>CC</sub> versions available
  - -3.3V, 2.5V, and 1.8V I/O capability on all versions
- Low Power Operation
  - -0.18-μm 6-layer metal SRAM-based logic process
  - Full-CMOS implementation of product term array
  - Standby current as low as 200 µA at 1.8V V<sub>CC</sub>
- · Simple timing model
  - No penalty for using full 16 product terms / macrocell
  - No delay for single product term steering or sharing
- Flexible clocking
  - —4 synchronous clocks per device
  - —1 spread-aware PLL drives all 4 clock networks
  - Locally generated Product Term clock
  - Clock polarity control at each register
- · Carry-chain logic for fast and efficient arithmetic operations

# CPLDs at FPGA Densities<sup>™</sup>

- Multiple I/O standards supported
  - -LVCMOS (3.3/3.0/2.5/1.8V), LVTTL, 3.3V PCI, SSTL2 (I-II), SSTL3 (I-II), HSTL (I-IV), and GTL+
- Compatible with NOBL<sup>™</sup>, ZBT<sup>™</sup>, and QDR<sup>™</sup> SRAMs
- Programmable slew rate control on each I/O pin
- User-Programmable Bus Hold capability on each I/O pin
- Fully PCI compliant (to 66 MHz 64-bit PCI spec rev2.2)
- CompactPCI hot swap ready
- Multiple package/pinout offering across all densities —208 to 676 pins in PQFP, BGA and FBGA packages
  - Same pinout for 3.3V/2.5V and 1.8V devices
  - Simplifies design migration across density
  - Self-Boot<sup>™</sup> solution in BGA and FBGA packages
- In-System Reprogrammable<sup>™</sup> (ISR<sup>™</sup>)
  - -JTAG-compliant on-board programming
  - Design changes don't cause pinout changes
- IEEE1149.1 JTAG boundary scan

## **Development Software**

- Warp®
  - IEEE 1076/1164 VHDL or IEEE 1364 Verilog context sensitive editing.
  - Active-HDL FSM graphical finite state machine editor
  - Active-HDL SIM post-synthesis timing simulator
  - -Architecture Explorer for detailed design analysis
  - Static Timing Analyzer for critical path analysis
  - Available on Windows 95<sup>™</sup>. Windows 98<sup>™</sup> & Windows NT<sup>™</sup> for \$99
  - Supports all Cypress programmable logic products

|        | Typical              |            | Cluster<br>memory | Channel<br>memory | Maximum  | f <sub>MAX2</sub> | Speed - t <sub>PD</sub><br>Pin-to-Pin | Standby I <sub>CC</sub> <sup>[2]</sup><br>T <sub>A</sub> =25°C |         |  |
|--------|----------------------|------------|-------------------|-------------------|----------|-------------------|---------------------------------------|----------------------------------------------------------------|---------|--|
| Device | Gates <sup>[1]</sup> | Macrocells | (Kbits)           | (Kbits)           | I/O Pins | (MHz)             | (ns)                                  | 3.3/2.5V                                                       | 1.8V    |  |
| 39K30  | 16K–48K              | 512        | 64                | 16                | 176      | 233               | 7.2                                   | 10 mA                                                          | 200 μA  |  |
| 39K50  | 23K–72K              | 768        | 96                | 24                | 218      | 233               | 7.2                                   | 10 mA                                                          | 300 μA  |  |
| 39K100 | 46K–144K             | 1536       | 192               | 48                | 302      | 222               | 7.5                                   | 10 mA                                                          | 600 μA  |  |
| 39K165 | 77K–241K             | 2560       | 320               | 80                | 386      | 181               | 8.5                                   | 10 mA                                                          | 1250 μA |  |
| 39K200 | 92K–288K             | 3072       | 384               | 96                | 428      | 181               | 8.5                                   | 10 mA                                                          | 1250 μA |  |
| 39K250 | 115K–361K            | 3840       | 480               | 120               | 470      | 167               | 8.5                                   | 10 mA                                                          | 1500 μA |  |
| 39K350 | 161K–505K            | 5376       | 672               | 168               | 520      | 154               | 9.0                                   | 10 mA                                                          | 2100 μA |  |

## Delta39K<sup>™</sup> ISR CPLD Family Members

Upper limit of typical gates is calculated by assuming only 10% of the channel memory is used. Standby  $I_{\rm CC}$  values are with PLL not utilized, no output load and stable inputs

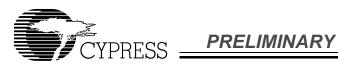
Note:



## Delta39K Speed Bins<sup>[3]</sup>

| Device | 233 | 200 | 181 | 167 | 154 | 125 | 83 |
|--------|-----|-----|-----|-----|-----|-----|----|
| 39K30  | Х   |     |     |     |     | Х   | Х  |
| 39K50  | Х   |     |     |     |     | Х   | Х  |
| 39K100 |     | Х   |     |     |     | Х   | Х  |
| 39K165 |     |     | Х   |     |     | Х   | Х  |
| 39K200 |     |     | Х   |     |     | Х   | Х  |
| 39K250 |     |     |     | Х   |     | Х   | Х  |
| 39K350 |     |     |     |     | Х   | Х   | Х  |

## Device Package Offering and I/O Count Including Dedicated Clock and Control Inputs


|        |                                      |                                             |                                             |                                             | Self-Boot Solution <sup>[5]</sup>           |                                                |                                             |                                      |
|--------|--------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------|
| Device | 208-EQFP<br>28X28 mm<br>0.5-mm pitch | <b>256-FBGA</b><br>17x17 mm<br>1.0-mm pitch | <b>484-FBGA</b><br>23x23 mm<br>1.0-mm pitch | <b>676-FBGA</b><br>27x27 mm<br>1.0-mm pitch | <b>256-FBGA</b><br>17x17 mm<br>1.0-mm pitch | <b>388-BGA</b><br>35x35 mm<br>1.27-mm<br>pitch | <b>484-FBGA</b><br>23x23 mm<br>1.0-mm pitch | 676-FBGA<br>27x27 mm<br>1.0-mm pitch |
| 39K30  | 136                                  | 176                                         |                                             |                                             | 176                                         |                                                |                                             |                                      |
| 39K50  | 136                                  | 180                                         |                                             |                                             |                                             | 218                                            | 218                                         |                                      |
| 39K100 | 136                                  | 180                                         | 302                                         |                                             |                                             | 294                                            |                                             | 302                                  |
| 39K165 | 136                                  |                                             | 356                                         |                                             |                                             | 294                                            |                                             | 386                                  |
| 39K200 | 136                                  |                                             | 368                                         |                                             |                                             | 294                                            |                                             | 428                                  |
| 39K250 | 136                                  |                                             |                                             | 470                                         |                                             | 294                                            |                                             | 470                                  |
| 39K350 | 136                                  |                                             |                                             | 520                                         |                                             | 294                                            |                                             | 520                                  |

Notes:

3.

3. 4. 5.

Speed bins shown here are for Commercial operating range. Please refer to Delta39K Information on page 41 for Industrial range speed bins. Self-Boot solution integrates the boot PROM (Flash Memory) with Delta39K die inside the same package.



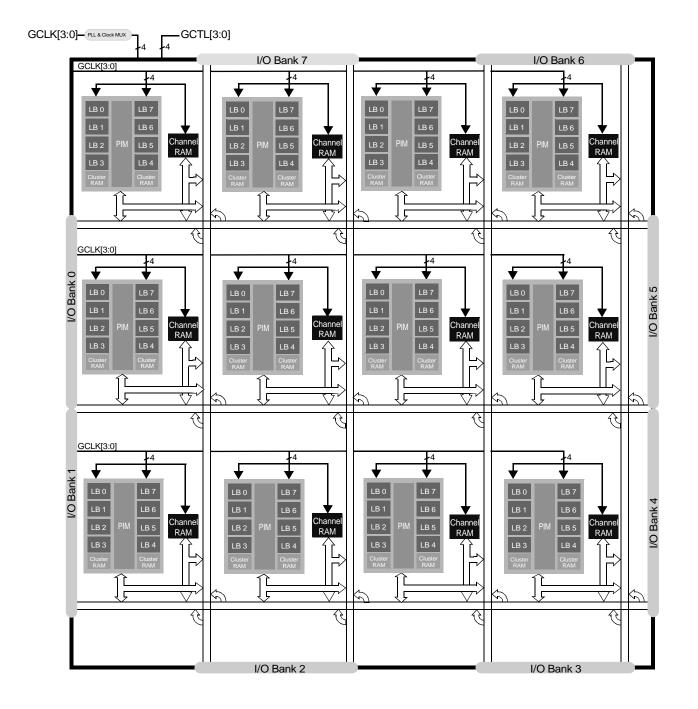



Figure 1. Delta39K100 Block Diagram (3 Rows x 4 Columns) with I/O Bank Structure



## **General Description**

The Delta39K family, based on a 0.18-µm, 6-layer metal CMOS logic process, offers a wide range of high-density solutions at unparalleled system performance. The Delta39K family is designed to combine the high speed, predictable timing, and ease of use of CPLDs with the high densities and low power of FPGAs. With devices ranging from 15,000 to 350,000 usable gates, the family features devices ten times the size of previously available CPLDs. Even at these large densities, the Delta39K family is fast enough to implement a fully synthesizable 64-bit, 66-MHz PCI core.

The architecture is based on Logic Block Clusters (LBC) that are connected by Horizontal and Vertical (H&V) routing channels. Each LBC features eight individual Logic Blocks (LB) and two cluster memory blocks. Adjacent to each LBC is a channel memory block, which can be accessed directly from the I/O pins. Both types of memory blocks are highly configurable and can be cascaded in width and depth. See *Figure 1* for a block diagram of the Delta39K architecture.

All the members of the Delta39K family have Cypress's highly regarded In-System Reprogrammability (ISR) feature, which simplifies both design and manufacturing flows, thereby reducing costs. The ISR feature provides the ability to reconfigure the devices without having design changes cause pinout or timing changes in most cases. The Cypress ISR function is implemented through a JTAG-compliant serial interface. Data is shifted in and out through the TDI and TDO pins respectively. Superior routability, simple timing, and the ISR allows users to change existing logic designs while simultaneously fixing pinout assignments and maintaining system performance.

The entire family features JTAG for ISR and boundary scan, and is compatible with the PCI Local Bus specification, meeting the electrical and timing requirements. The Delta39K family also features user programmable bus-hold and slew rate control capabilities on each I/O pin.

#### **AnyVolt Interface**

All Delta39KV devices feature an on-chip regulator, which accepts 3.3V or 2.5V on the V<sub>CC</sub> supply pins and steps it down to 1.8V internally, the voltage level at which the core operates.

The Delta39KZ devices accept 1.8V on the V<sub>CC</sub> supply pins directly. With Delta39K's AnyVolt technology, the I/O pins can be connected to either 1.8V, 2.5V, or 3.3V. All Delta39K devices are 3.3V tolerant regardless of V<sub>CCIO</sub> or V<sub>CC</sub> settings.

| Device | V <sub>cc</sub> | V <sub>CCIO</sub>                           |
|--------|-----------------|---------------------------------------------|
| 39KV   | 3.3V or 2.5V    | 3.3V or 2.5V or 1.8V or 1.5V <sup>[6]</sup> |
| 39KZ   | 1.8V            | 3.3V or 2.5V or 1.8V or 1.5V <sup>[6]</sup> |

#### **Global Routing Description**

The routing architecture of the Delta39K is made up of horizontal and vertical (H&V) routing channels. These routing channels allow signals from each of the Delta39K architectural components to communicate with one another. In addition to the horizontal and vertical routing channels that interconnect the I/O banks, channel memory blocks, and logic block clusters, each LBC contains a Programmable Interconnect Matrix (PIM<sup>™</sup>), which is used to route signals among the logic blocks and the cluster memory blocks.

*Figure 2* is a block diagram of the routing channels that interface within the Delta39K architecture. The LBC is exactly the same for every member of the Delta39K CPLD family.

#### Logic Block Cluster (LBC)

The Delta39K architecture consists of several logic block clusters, each of which have eight Logic Blocks (LB) and two cluster memory blocks connected via a Programmable Interconnect Matrix (PIM) as shown in *Figure 3*. Each cluster memory block consists of 8-Kbit single-port RAM, which is configurable as synchronous or asynchronous. The cluster memory blocks can be cascaded with other cluster memory blocks within the same LBC as well as other LBCs to implement larger memory functions. If a cluster memory block is not specifically utilized by the designer, Cypress's *Warp* software can automatically use it to implement large blocks of logic.

All LBCs interface with each other via horizontal and vertical routing channels.

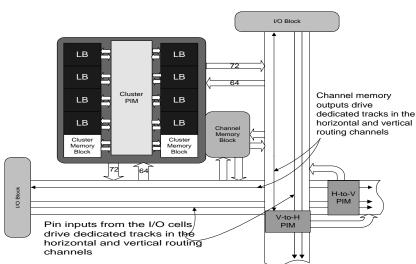
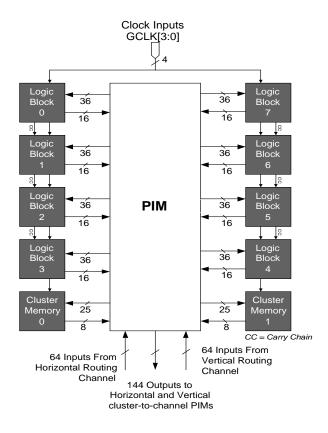




Figure 2. Delta39K Routing Interface



PRELIMINARY

Figure 3. Delta39K Logic Block Cluster Diagram

#### Logic Block (LB)

The logic block is the basic building block of the Delta39K architecture. It consists of a product term array, an intelligent product-term allocator, and 16 macrocells.

#### **Product Term Array**

Each logic block features a 72 x 83 programmable product term array. This array accepts 36 inputs from the PIM. These inputs originate from device pins and macrocell feedbacks as well as cluster memory and channel memory feedbacks. Active LOW and active HIGH versions of each of these inputs are generated to create the full 72-input field. The 83 product terms in the array can be created from any of the 72 inputs.

Of the 83 product terms, 80 are for general-purpose use for the 16 macrocells in the logic block. Two of the remaining three product terms in the logic block are used as asynchronous set and asynchronous reset product terms. The final product term is the Product Term clock (PTCLK) and is shared by all 16 macrocells within a logic block.

#### **Product Term Allocator**

Through the product term allocator, *Warp* software automatically distributes the 80 product terms as needed among the 16 macrocells in the logic block. The product term allocator pro-

vides two important capabilities without affecting performance: product term steering and product term sharing.

#### Product Term Steering

Product term steering is the process of assigning product terms to macrocells as needed. For example, if one macrocell requires ten product terms while another needs just three, the product term allocator will "steer" ten product terms to one macrocell and three to the other. On Delta39K devices, product terms are steered on an individual basis. Any number between 1 and 16 product terms can be steered to any macrocell.

#### Product Term Sharing

Product term sharing is the process of using the same product term among multiple macrocells. For example, if more than one function has one or more product terms in its equation that are common to other functions, those product terms are only programmed once. The Delta39K product term allocator allows sharing across groups of four macrocells in a variable fashion. The software automatically takes advantage of this capability so that the user does not have to intervene.

Note that neither product term sharing nor product term steering have any effect on the speed of the product. All steering and sharing configurations have been incorporated in the timing specifications for the Delta39K devices.



#### Macrocell

Within each logic block there are 16 macrocells. Each macrocell accepts a sum of up to 16 product terms from the product term array. The sum of these 16 product terms can be output in either registered or combinatorial mode. *Figure 4* displays the block diagram of the macrocell. The register can be asynchronously preset or asynchronously reset at the macrocell level with the separate preset and reset product terms. Each of these product terms features programmable polarity. This allows the registers to be preset or reset based on an AND expression or an OR expression.

An XOR gate in the Delta39K macrocell allows for many different types of equations to be realized. It can be used as a polarity mux to implement the true or complement form of an equation in the product term array or as a toggle to turn the D flip-flop into a T flip-flop. The carry-chain input mux allows additional flexibility for the implementation of different types of logic. The macrocell can utilize the carry chain logic to implement adders, subtractors, magnitude comparators, parity tree, or even generic XOR logic. The output of the macrocell is either registered or combinatorial.

#### Carry Chain Logic

The Delta39K macrocell features carry chain logic which is used for fast and efficient implementation of arithmetic operations. The carry logic connects macrocells in up to 4 logic blocks for a total of 64 macrocells. Effective data path operations are implemented through the use of carry-in arithmetic, which drives through the circuit quickly. *Figure 4* shows that the carry chain logic within the macrocell consists of two product terms (CPT0 and CPT1) from the PTA and an input carry-in for carry logic. The inputs to the carry chain mux are connected directly to the product terms in the PTA. The output of the carry chain mux generates the carry-out for the next macrocell in the logic block as well as the local carry input that is connected to an input of the XOR input mux. Carry-in and a configuration bit are inputs to an AND gate. This AND gate provides a method of segmenting the carry chain in any macrocell in the logic block.

#### Macrocell Clocks

Clocking of the register is highly flexible. Four global synchronous clocks (GCLK[3:0]) and a Product Term clock (PTCLK) are available at each macrocell register. Furthermore, a clock polarity mux within each macrocell allows the register to be clocked on the rising or the falling edge (see macrocell diagram in *Figure 4*).

#### PRESET/RESET Configurations

The macrocell register can be asynchronously preset and reset using the PRESET and RESET mux. Both signals are active high and can be controlled by either of two Preset/Reset product terms (PRC[1:0] in *Figure 4*) or GND. In situations where the PRESET and RESET are active at the same time, RESET takes priority over PRESET.

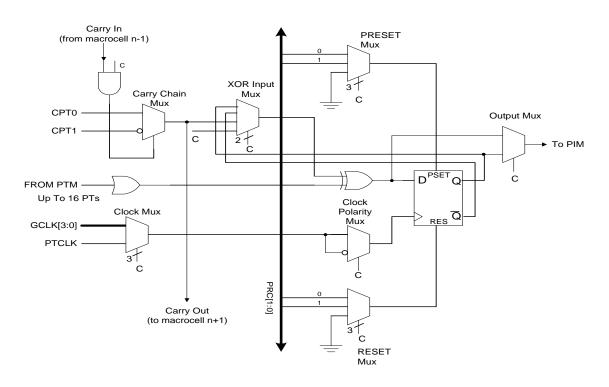



Figure 4. Delta39K Macrocell



#### **Embedded Memory**

Each member of the Delta39K family contains two types of embedded memory blocks. The channel memory block is placed at the intersection of horizontal and vertical routing channels. Each channel memory block is 4096 bits in size and can be configured as asynchronous or synchronous Dual-Port RAM, Single-Port RAM, Read-Only memory (ROM), or synchronous FIFO memory. The memory organization is configurable as 4Kx1, 2Kx2, 1Kx4 and 512x8. The second type of memory block is located within each LBC and is referred to as a cluster memory block. Each LBC contains two cluster memory blocks that are 8192 bits in size. Similar to the channel memory blocks, the cluster memory blocks can be configured as 8Kx1, 4Kx2, 2Kx4 and 1Kx8 asynchronous or synchronous Single-Port RAM or ROM.

#### **Cluster Memory**

Each logic block cluster of the Delta39K contains two 8192-bit cluster memory blocks. *Figure 5* is a block diagram of the cluster memory block and the interface of the cluster memory block to the cluster PIM.

The output of the cluster memory block can be optionally registered to perform synchronous pipelining or to register asynchronous read and write operations. The output registers contain an asynchronous RESET which can be used in any type of sequential logic circuits (e.g., state machines).

There are four global clocks (GCLK[3:0]) and one local clock available for the input and the output registers. The local clock for the input registers is independent of the one used for the output registers. The local clock is generated in the user design in a macrocell or comes from an I/O pin.

#### Cluster Memory Initialization

The cluster memory powers up in an undefined state, but is set to a user-defined known state during configuration. To facilitate the use of look-up-table (LUT) logic and ROM applications, the cluster memory blocks can be initialized with a given set of data when the device is configured at power up. For LUT and ROM applications, the user cannot write to memory blocks.

#### **Channel Memory**

The Delta39K architecture includes an embedded memory block at each crossing point of horizontal and vertical routing channels. The channel memory is a 4096-bit embedded memory block that can be configured as asynchronous or synchronous Single-Port RAM, Dual-Port RAM, ROM, or synchronous FIFO memory.

Data, address, and control inputs to the channel memory are driven from horizontal and vertical routing channels. All data and FIFO logic outputs drive dedicated tracks in the horizontal and vertical routing channels. The clocks for the channel memory block are selected from four global clocks and pin inputs from the horizontal and vertical channels. The clock muxes also include a polarity mux for each clock so that the user can choose an inverted clock.

#### Dual-Port (Channel Memory) Configuration

Each port has distinct address inputs, as well as separate data and control inputs that can be accessed simultaneously. The inputs to the Dual-Port memory are driven from the horizontal and vertical routing channels. The data outputs drive dedicated tracks in the routing channels. The interface to the routing is such that Port A of the Dual-Port interfaces primarily with the horizontal routing channel and Port B interfaces primarily with the vertical routing channel.

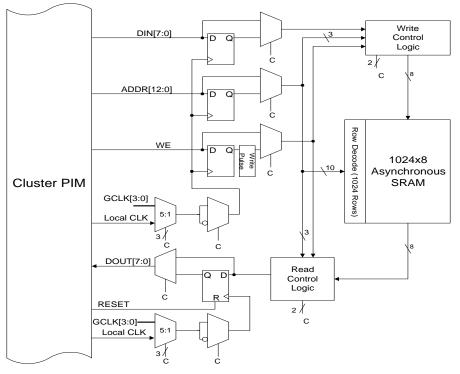



Figure 5. Block Diagram of Cluster Memory Block



The clocks for each port of the Dual-Port configuration are selected from four global clocks and two local clocks. One local clock is sourced from the horizontal channel and the other from the vertical channel. The data outputs of the dual-port memory can also be registered. Clocks for the output registers are also selected from four global clocks and two local clocks. One clock polarity mux per port allows the use of true or complement polarity for input and output clocking purposes.

#### Arbitration

The Dual-Port configuration of the Channel Memory Block provides arbitration when both ports access the same address at the same time. Depending on the memory operation being attempted, one port always gets priority. See Table 1 for details on which port gets priority for read and write operations. An active-LOW 'Address Match' signal is generated when an address collision occurs.

#### Table 1. Arbitration Result: Address Match Signal **Becomes Active**

| Port A | Port B | Result of<br>Arbitration | Comment                                                                                                                                    |
|--------|--------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Read   | Read   | No arbitration required  | Both ports read at the same time                                                                                                           |
| Write  | Read   | Port A gets<br>priority  | If Port B requests first<br>then it will read the cur-<br>rent data. The output will<br>then change to the newly<br>written data by Port A |
| Read   | Write  | Port B gets<br>priority  | If Port A requests first<br>then it will read the cur-<br>rent data. The output will<br>then change to the newly<br>written data by Port B |
| Write  | Write  | Port A gets<br>priority  | Port B is blocked until<br>Port A is finished writing                                                                                      |

#### FIFO (Channel Memory) Configuration

The channel memory blocks are also configurable as synchronous FIFO RAM. In the FIFO mode of operation, the channel memory block supports all normal FIFO operations without the use of any general-purpose logic resources in the device.

The FIFO block contains all of the necessary FIFO flag logic, including the read and write address pointers. The FIFO flags include an empty/full flag (EF), half-full flag (HF), and programmable almost-empty/full (PAEF) flag output. The FIFO configuration has the ability to perform simultaneous read and write operations using two separate clocks. These clocks may be tied together for a single operation or may run independently for asynchronous Read/Write (w.r.t. each other) applications. The data and control inputs to the FIFO block are driven from the horizontal or vertical routing channels. The data and flag outputs are driven onto dedicated routing tracks in both the horizontal and vertical routing channels. This allows the FIFO blocks to be expanded by using multiple FIFO blocks on the same horizontal or vertical routing channel without any speed penalty.

In FIFO mode, the write and read ports are controlled by separate clock and enable signals. The clocks for each port are selected from four global clocks and two local clocks.

One local clock is sourced from the horizontal channel and the other from the vertical channel. The data outputs from the read port of the FIFO can also be registered. One clock polarity mux per port allows using true or complement polarity for read and write operations. The write operation is controlled by the clock and the write enable pin. The read operation is controlled by the clock and the read enable pin. The enable pins can be sourced from horizontal or vertical channels.

#### Channel Memory Initialization

The channel memory powers up in an undefined state, but is set to a user-defined known state during configuration. To facilitate the use of look-up-table (LUT) logic and ROM applications, the channel memory blocks can be initialized with a given set of data when the device is configured at power up. For LUT and ROM applications, the user cannot write to memory blocks.

#### **Channel Memory Routing Interface**

Similar to LBC outputs, the channel memory blocks feature dedicated tracks in the horizontal and vertical routing channels for the data outputs and the flag outputs, as shown in Figure 6. This allows the channel memory blocks to be expanded easily. These dedicated lines can be routed to I/O pins as chip outputs or to other logic block clusters to be used in logic equations.



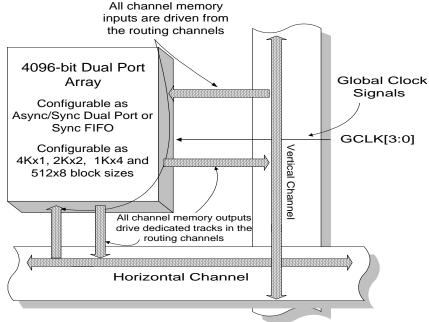



Figure 6. Block Diagram of Channel Memory Block

#### I/O Banks

The Delta39K interfaces the horizontal and vertical routing channels to the pins through I/O banks. There are 8 I/O banks per device as shown in *Figure 7*, and all I/Os from an I/O bank are located in the same section of a package for PCB layout convenience.

Delta39K devices support True Vertical Migration<sup>™</sup> i.e. for each package type, Delta39K devices of different densities keep given pins in the same I/O banks. This allows for easy and simple implementation of multiple I/O standards during the design and prototyping phase, before a final density has been determined.

Each I/O bank contains several I/O cells, and each I/O cell contains an input/output register, an output enable register, programmable slew rate control and programmable bus hold control logic. Each I/O cell drives a pin output of the device; the cell also supplies an input to the device that connects to a dedicated track in the associated routing channel.

Each I/O bank can use any supported I/O standard by supplying appropriate V<sub>REF</sub> and V<sub>CCIO</sub> voltages. All the V<sub>REF</sub> and V<sub>CCIO</sub> pins in an I/O bank must be connected to the same V<sub>REF</sub> and V<sub>CCIO</sub> voltage respectively. This requirement restricts the number of I/O standards supported by an I/O bank at any given time.

The number of I/Os which can be used in each I/O bank depend on the type of I/O standards and the number of  $V_{CCIO}$  and GND pins being used. This restriction is derived from the electromigration limit of the  $V_{CCIO}$  and GND bussing on the chip. Please refer to the note on page 17 and the application note titled "Delta39K Family Device I/O Standards and Configurations" for details.

#### I/O Cell

*Figure 8* is a block diagram of the Delta39K I/O cell. The I/O cell contains a three-state input buffer, an output buffer, and a register that can be configured as an input or output register. The output buffer has a slew rate control option that can be used to configure the output for a slower slew rate. The input of the device and the pin output can each be configured as registered or combinatorial; however, only one path can be configured as registered in a given design.

The output enable in an I/O cell can be selected from one of the four global control signals or from one of two Output Control Channel (OCC) signals. The output enable can be configured as always enabled or always disabled or it can be controlled by one of the remaining inputs to the mux. The selection is done via a mux that includes  $V_{CC}$  and GND as inputs

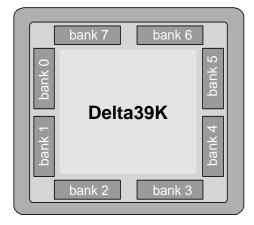



Figure 7. Delta39K I/O Bank Block Diagram



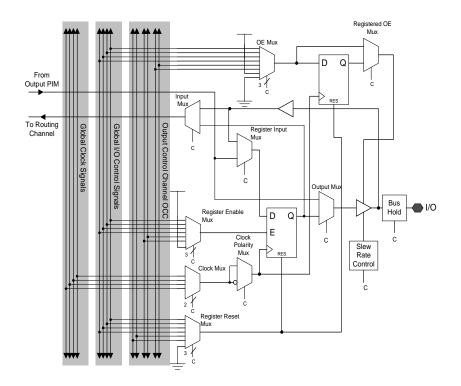



Figure 8. Block Diagram of I/O Cell

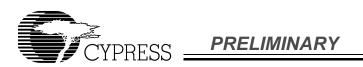
#### I/O Signals

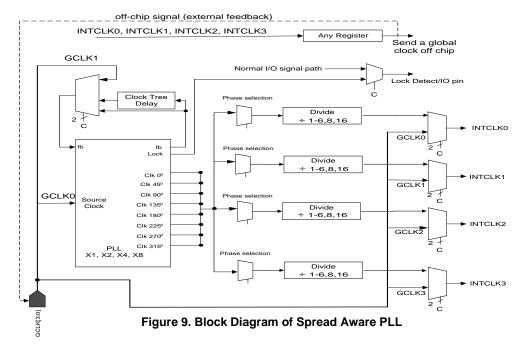
There are four dedicated inputs (GCTL[3:0]) that are used as Global I/O Control Signals available to every I/O cell. These global I/O control signals may be used as output enables, register resets and register clock enables as shown in *Figure 8*. These global control signals, driven from 4 dedicated pins, can only be used as active-high signals and are available only to the I/O cells thereby implementing fast resets, register and output enables.

In addition, there are six Output Control Channel (OCC) signals available to each I/O cell. These control signals may be used as output enables, register resets and register clock enables as shown in *Figure 8*. Unlike global control signals, these OCC signal can be driven from internal logic or and I/O pin.

One of the four global clocks can be selected as the clock for the I/O cell register. The clock mux output is an input to a clock polarity mux that allows the input/output register to be clocked on either edge of the clock

#### Slew Rate Control


The ouput buffer has a slew rate control option. This allows the output buffer to slew at a fast rate (3 V/ns) or a slow rate (1 V/ns). All I/Os default to fast slew rate. For designs concerned with meeting FCC emissions standards the slow edge provides for lower system noise. For designs requiring very high performance the fast edge rate provides maximum system performance.


#### I/O Standards

| I/O<br>Standard | V <sub>RE</sub> | <sub>F</sub> (V) | V <sub>CCIO</sub> | Termination<br>Voltage (V <sub>TT</sub> ) |
|-----------------|-----------------|------------------|-------------------|-------------------------------------------|
|                 | Min.            | Max.             |                   |                                           |
| LVTTL           | N               | /A               | 3.3V              | N/A                                       |
| LVCMOS          |                 |                  | 3.3V              | N/A                                       |
| LVCMOS3         |                 |                  | 3.0V              | N/A                                       |
| LVCMOS2         |                 |                  | 2.5V              | N/A                                       |
| LVCMOS18        |                 |                  | 1.8V              | N/A                                       |
| 3.3V PCI        |                 |                  | 3.3V              | N/A                                       |
| GTL+            | 0.9             | 1.1              | N/A               | 1.5                                       |
| SSTL3 I         | 1.3             | 1.7              | 3.3V              | 1.5                                       |
| SSTL3 II        | 1.3             | 1.7              | 3.3V              | 1.5                                       |
| SSTL2 I         | 1.15            | 1.35             | 2.5V              | 1.25                                      |
| SSTL2 II        | 1.15            | 1.35             | 2.5V              | 1.25                                      |
| HSTL I          | 0.68            | 0.9              | 1.5V              | 0.75                                      |
| HSTL II         | 0.68 0.9        |                  | 1.5V              | 0.75                                      |
| HSTL III        | 0.68            | 0.9              | 1.5V              | 1.5                                       |
| HSTL IV         | 0.68            | 0.9              | 1.5V              | 1.5                                       |

Programmable Bus Hold

On each I/O pin, user-programmable-bus-hold is included. Bus-hold, which is an improved version of the popular internal pull-up resistor, is a weak latch connected to the pin that does not degrade the device's performance. As a latch, bus-hold





maintains the last state of a pin when the pin is placed in a high-impedance state, thus reducing system noise in bus-interface applications. Bus-hold additionally allows unused device pins to remain unconnected on the board, which is particularly useful during prototyping as designers can route new signals to the device without cutting trace connections to  $V_{CC}$  or GND. For more information, see the application note "Understanding Bus-Hold – A Feature of Cypress CPLDs."

#### Clocks

Delta39K has four dedicated clock input pins (GCLK[3:0]) to accept system clocks. One of these clocks (GCLK[0]) may be selected to drive an on-chip Phase-Locked Loop (PLL) for frequency modulation (see *Figure 9* for details).

The global clock tree for a Delta39K device can be driven by a combination of the dedicated clock pins and/or the PLL-derived clocks. The global clock tree consists of four global clocks that go to every macrocell, memory block, and I/O cell.

#### Clock Tree Distribution

The global clock tree performs two primary functions. First, the clock tree generates the four global clocks by multiplexing four dedicated clocks from the package pins and four PLL driven clocks. Second, the clock tree distributes the four global clocks to every cluster, channel memory, and I/O block on the die. The global clock tree is designed such that the clock skew is minimized while maintaining an acceptable clock delay.

#### Spread Aware<sup>™</sup> PLL

Each device in the Delta39K family features an on-chip PLL designed using Spread Aware technology for low EMI applications. In general, PLLs are used to implement time-divisionmultiplex circuits to achieve higher performance with fewer device resources.

For example, a system that operates on a 32-bit data path that runs at 40 MHz can be implemented with 16-bit circuitry that runs internally at 80 MHz. PLLs can also be used to take advantage of the positioning of the internally generated clock edges to shift performance towards improved setup, hold or clock-to-out times.

There are several frequency multiply (X1, X2, X4, X8) and divide (/1, /2, /3, /4, /5, /6. /8, /16) options available to create a wide range of clock frequencies from a single clock input (GCLK[0]). For increased flexibility, there are seven phase shifting options which allow clock skew/de-skew by  $45^{\circ}$ ,  $90^{\circ}$ ,  $135^{\circ}$ ,  $180^{\circ}$ ,  $225^{\circ}$ ,  $270^{\circ}$  or  $315^{\circ}$ .

The Spread Aware feature refers to the ability of the PLL to track a spread-spectrum input clock such that its spread is seen on the output clock with the PLL staying locked. The total amount of spread on the input clock should be limited to 0.6% of the fundamental frequency. Spread Aware feature is supported only with X1, X2 and X4 multiply options.

The Voltage Controlled Oscillator (VCO), the core of the Delta39K PLL is designed to operate within the frequency range of 100 MHz to 266 MHz. Hence, the multiply option combined with input (GCLK[0]) frequency should be selected such that this VCO operating frequency requirement is met. This is demonstrated in *Table 2* (columns 1, 2, and 3).

Another feature of this PLL is the ability to drive the output clock (INTCLK) off the Delta39K chip to clock other devices on the board, as shown in *Figure 9* above. This off-chip clock is half the frequency of the output clock as it has to go through a register (I/O register or a macrocell register).



| Input Frequency                      | Valid                               | Multiply Options | Valid Divide Options |                                                           |                             |  |  |
|--------------------------------------|-------------------------------------|------------------|----------------------|-----------------------------------------------------------|-----------------------------|--|--|
| (GCLK[0])<br>f <sub>PLLI</sub> (MHz) | VCO Output<br>Value Frequency (MHz) |                  | Value                | Output Frequency (INTCLK[3:0])<br>f <sub>PLLO</sub> (MHz) | Off-chip Clock<br>Frequency |  |  |
| 12.5–25                              | 8                                   | 100–200          | 1–6, 8, 16           | 6.25–200                                                  | 3.12–100                    |  |  |
| 25–33                                | 8                                   | 200–266          | 1–6, 8, 16           | 12.5–266                                                  | 6.25–133                    |  |  |
| 20 00                                | 4                                   | 100–133          | 1–6, 8, 16           | 6.25–133                                                  | 3.12–66                     |  |  |
| 33–50                                | 4                                   | 133–200          | 1–6, 8, 16           | 8.33–200                                                  | 4.16–100                    |  |  |
| 50–66                                | 4                                   | 200–266          | 1–6, 8, 16           | 12.5–266                                                  | 6.25–133                    |  |  |
|                                      | 2                                   | 100–133          | 1–6, 8, 16           | 6.25–133                                                  | 3.12–66                     |  |  |
| 66–100                               | 2                                   | 133–200          | 1–6, 8, 16           | 8.3–200                                                   | 4.16–100                    |  |  |
| 100–133                              | 2                                   | 200–266          | 1–6, 8, 16           | 12.5–266                                                  | 6.25–133                    |  |  |
|                                      | 1                                   | 100–133          | 1–6, 8, 16           | 6.25–133                                                  | 3.12–66                     |  |  |

#### Table 2. PLL Multiply and Divide Options—without External Feedback

| Table 3. | PLL Multiply and Divide Options—with External Feedback |  |
|----------|--------------------------------------------------------|--|
|----------|--------------------------------------------------------|--|

|                                                   | Valid Multiply Options |                               | Valid Divide Options |                                                      |                             |  |  |
|---------------------------------------------------|------------------------|-------------------------------|----------------------|------------------------------------------------------|-----------------------------|--|--|
| Input (GCLK) Frequency<br>f <sub>PLLI</sub> (MHz) | Value                  | VCO Output<br>Frequency (MHz) | Value                | Output (INTCLK) Frequency<br>f <sub>PLLO</sub> (MHz) | Off-chip Clock<br>Frequency |  |  |
| 50–66                                             | 1                      | 100–133                       | 1                    | 100–133                                              | 50–66                       |  |  |
| 66–100                                            | 1                      | 133–200                       | 1                    | 133–200                                              | 66–100                      |  |  |
| 100–133                                           | 1                      | 1 200–266                     |                      | 200–266                                              | 100–133                     |  |  |

This PLL can also be used for board de-skewing purpose by driving a PLL output clock off-chip, routing it to the other devices on the board and feeding it back to the PLL's external feedback input (GCLK[1]). When this feature is used, only limited multiply, divide and phase shift options can be used.

*Table 2* describes the valid multiply and divide options that can be used without an external feedback. *Table 3* describes the valid multiply & divide options that can be used with an external feedback.

*Table 4* describes the valid phase shift options that can be used with or without an external feedback.

*Table 5* is an example of the effect of all the available divide and phase shift options on a VCO output of 250 MHz. It also shows the effect of division on the duty cycle of the resultant clock. Note that the duty cycle is 50-50 when a VCO output is divided by an even number. Also note that the phase shift applies to the VCO output and not to the divided output.

# Table 4. PLL Phase Shift Options—with and without External Feedback

| Without External Feedback                 | With External<br>Feedback |
|-------------------------------------------|---------------------------|
| 0°,45°, 90°, 135°, 180°, 225°, 270°, 315° | 0°                        |

The Spread Aware PLL operates as specified for Delta39KV devices (2.5V/3.3V), but not Delta39KZ devices (1.8V). For more details on the architecture and operation of this PLL please refer to the application note entitled "Delta39K PLL and Clock Tree.

| Table 5. | Liming of Clock Ph | ases for all Divide Opt | tions for a VCO Outi | out Frequency of 250 MHz |
|----------|--------------------|-------------------------|----------------------|--------------------------|

| Divide<br>Factor | Period<br>(ns) | Duty<br>Cy-<br>cle% | 0°<br>(ns) | 45°<br>(ns) | 90°<br>(ns) | 135°<br>(ns) | 180°<br>(ns) | 225°<br>(ns) | 270°<br>(ns) | 315°<br>(ns) |
|------------------|----------------|---------------------|------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 1                | 4              | 40-60               | 0          | 0.5         | 1.0         | 1.5          | 2.0          | 2.5          | 3.0          | 3.5          |
| 2                | 8              | 50                  | 0          | 0.5         | 1.0         | 1.5          | 2.0          | 2.5          | 3.0          | 3.5          |
| 3                | 12             | 33-67               | 0          | 0.5         | 1.0         | 1.5          | 2.0          | 2.5          | 3.0          | 3.5          |
| 4                | 16             | 50                  | 0          | 0.5         | 1.0         | 1.5          | 2.0          | 2.5          | 3.0          | 3.5          |
| 5                | 20             | 40-60               | 0          | 0.5         | 1.0         | 1.5          | 2.0          | 2.5          | 3.0          | 3.5          |
| 6                | 24             | 50                  | 0          | 0.5         | 1.0         | 1.5          | 2.0          | 2.5          | 3.0          | 3.5          |
| 8                | 32             | 50                  | 0          | 0.5         | 1.0         | 1.5          | 2.0          | 2.5          | 3.0          | 3.5          |
| 16               | 64             | 50                  | 0          | 0.5         | 1.0         | 1.5          | 2.0          | 2.5          | 3.0          | 3.5          |



#### **CompactPCI Hot Swap**

CompactPCI Hot Swap specification allows the removal and insertion of cards into CompactPCI sockets without switchingoff the bus. Delta39K CPLDs can be used as a CompactPCI host or target on these cards.

This feature is useful in telecommunication and networking applications as it allows implementation of high availability systems, where repairs and upgrades can be done without downtime.

Delta39K CPLDs are CompactPCI Hot Swap Ready per CompactPCI Hot Swap specification R1.0, with the following two exceptions:

- PCI buffers do not support the AC specifications for 5V signaling and
- The I/O cells do not provide bias voltage support External resistors can be used to achieve this per section 3.1.3.1 of the CompactPCI Hot Swap specification R1.0

#### Timing Model

One important feature of the Delta39K family is the simplicity of its timing. All combinatorial and registered/synchronous delays are worst case and system performance is static (as shown in the AC specs section) as long as data is routed through the same horizontal and vertical channels. Figure 10 illustrates the true timing model for the 200-MHz devices. For synchronous clocking of macrocells, a delay is incurred from macrocell clock to macrocell clock of separate Logic Blocks within the same cluster, as well as separate Logic Blocks within different clusters. This is respectively shown as t<sub>SCS</sub> and t<sub>SCS2</sub> in Figure 10. For combinatorial paths, any input to any output (from corner to corner on the device), incurs a worstcase delay in the 39K100 regardless of the amount of logic or which horizontal and vertical channels are used. This is the tPD shown in Figure 10. For synchronous systems, the input setup time to the output macrocell register and the clock to output time are shown as the parameters  $t_{MCS}$  and  $t_{MCCO}$  shown in the Figure 10. These measurements are for any output and synchronous clock, regardless of the logic placement.

The Delta39K features:

- no dedicated vs. I/O pin delays
- no penalty for using 0–16 product terms
- · no added delay for steering product terms
- no added delay for sharing product terms
- no output bypass delays

The simple timing model of the Delta39K family eliminates unexpected performance penalties. PRELIMINARY

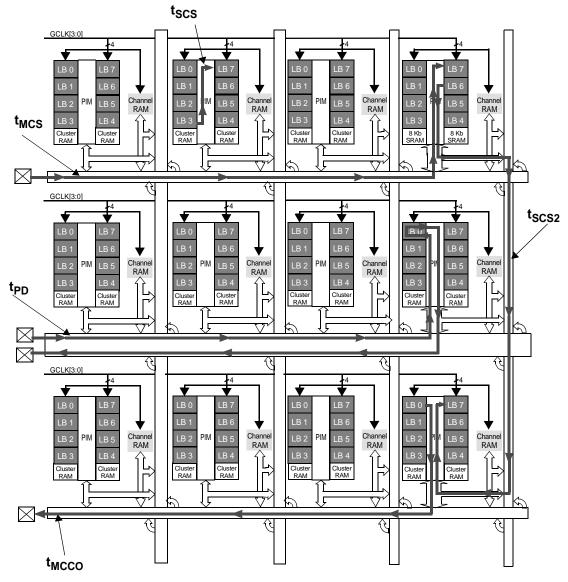



Figure 10. Timing Model for 39K100 Device

#### IEEE 1149.1 Compliant JTAG Operation

The Delta39K family has an IEEE 1149.1 JTAG interface for both Boundary Scan and ISR operations.

Four dedicated pins are reserved on each device for use by the Test Access Port (TAP).

#### Boundary Scan

The Delta39K family supports Bypass, Sample/Preload, Extest, Intest, Idcode and Usercode boundary scan instructions. The JTAG interface is shown in *Figure 11*.

#### In-System Reprogramming (ISR)

In-System Reprogramming is the combination of the capability to program or reprogram a device on-board, and the ability to support design changes without changing the system timing or device pinout. This combination means design changes during debug or field upgrades do not cause board respins. The Delta39K family implements ISR by providing a JTAG compliant interface for on-board programming, robust routing resources for pinout flexibility, and a simple timing model for consistent system performance.

#### Configuration

Each device of the Delta39K family is available in a volatile and a Self-Boot package. Cypress's CPLD boot EEPROM is used to store configuration data for the volatile solution and an embedded on-chip FLASH memory device is used for the Self-Boot solution.

For volatile Delta39K packages, programming is defined as the loading of a user's design into the external CPLD boot EEPROM. For Self-Boot Delta39K packages, programming is defined as the loading of a user's design into the on-chip



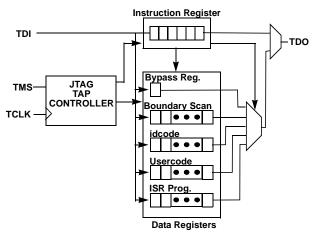



Figure 11. JTAG Interface

FLASH internal to the Delta39K package. Configuration is defined as the loading of a user's design into the Delta39K die.

Configuration can begin in two ways. It can be initiated by toggling the Reconfig pin from LOW to HIGH, or by issuing the appropriate IEEE std 1149.1 JTAG instruction to the Delta39K device via the JTAG interface. There are two IEEE std 1149.1 JTAG instructions that initiate configuration of the Delta39K. The Self Config instruction causes the Delta39K to (re)configure with data stored in the serial boot PROM or the embedded FLASH memory. The Load Config instruction causes the Delta39K to (re)configure according to data provided by other sources such as a PC, automatic test equipment (ATE), or an embedded micro-controller/processor via the JTAG interface. For more information on configuring Delta39K devices, refer the application note "Configuring to titled Delta39K/Quantum38K" at http://www.cypress.com.

There are two configuration options available for issuing the IEEE std 1149.1 JTAG instructions to the Delta39K. The first method is to use a PC with the C3ISR programming cable and software. With this method, the ISR pins of the Delta39K devices in the system are routed to a connector at the edge of the printed circuit board. The C3ISR programming cable is then connected between the PC and this connector. A simple configuration file instructs the ISR software of the programming operations to be performed on the Delta39K devices in the system. The ISR software then automatically completes all of the necessary data manipulations required to accomplish configuration, reading, verifying, and other ISR functions. For more information on the Cypress ISR interface, see the ISR Programming Kit data sheet (CY3900i).

The second configuration option for the Delta39K is to utilize the embedded controller or processor that already exists in the system. The Delta39K ISR software assists in this method by converting the device HEX file into the ISR serial stream that contains the ISR instruction information and the addresses and data of locations to be configured. The embedded controller then simply directs this ISR stream to the chain of Delta39K devices to complete the desired reconfiguration or diagnostic operations. Contact your local sales office for information on availability of this option.

#### Programming

The on-chip FLASH device of the Delta39K Self-Boot package is programmed by issuing the appropriate IEEE std 1149.1 JTAG instruction to the internal FLASH memory via the JTAG interface. This can be done automatically using ISR/STAPL software. The configuration bits are sent from a PC through the JTAG port into the Delta39K via the C3ISR programming cable. The data is then internally passed from Delta39K to the on-chip FLASH. For more information on how to program the Delta39K through ISR/STAPL, please refer to the ISR/STAPL User Guide.

The external CPLD boot EEPROM used to store configuration data for the Delta39K volatile package is programmed through Cypress's CYDH2200E CPLD Boot PROM Programming Kit via a two-wire interface. For more information on how to program the CPLD boot EEPROM, please refer to the data sheet titled "CYDH2200E CPLD Boot PROM Programming Kit." For more information on the architecture and timing specification of the boot EEPROM, refer to the data sheet titled "CPLD Boot EEPROM."

#### **Third-Party Programmers**

Cypress support is available on a wide variety of third-party programmers. All major programmers (including BP Micro, System General, Hi-Lo) support the Delta39K family.

#### **Development Software Support**

#### Warp

*Warp* is a state-of-the-art design environment for designing with Cypress programmable logic. *Warp* utilizes a subset of IEEE 1076/1164 VHDL and IEEE 1364 as the Hardware Description Language (HDL) for design entry. *Warp* accepts VHDL or Verilog input, synthesizes and optimizes the entered design, and outputs a configuration bitstream for the desired Delta39K device. For simulation, *Warp* provides a graphical waveform simulator as well as VHDL and Verilog Timing Models.

VHDL and Verilog are open, powerful, non-proprietary Hardware Description Languages (HDLs) that are standards for behavioral design entry and simulation. HDL allows designers to learn a single language that is useful for all facets of the design process.

#### **Third-Party Software**

Cypress products are supported in a number of third-party design entry and simulation tools. Refer to the third-party software data sheet or contact your local sales office for a list of currently supported third party vendors.



## **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.)

| Storage Temperature                               | –65°C to +150°C |
|---------------------------------------------------|-----------------|
| Soldering Temperature                             | 220°C           |
| Ambient Temperature with<br>Power Applied         | –40°C to +85°C  |
| Junction Temperature                              | 135°C           |
| V <sub>CC</sub> to Ground Potential (39KZ device) | –0.5V to 2.5V   |

## **Operating Range**

| V <sub>CC</sub> to Ground Potential (39KV device)0.5V to 4.6V |
|---------------------------------------------------------------|
| V <sub>CCIO</sub> to Ground Potential0.5V to 4.6V             |
| DC Voltage Applied to Outputs in High Z State –0.5V to 4.5V   |
| DC Input voltage0.5V to 4.5V                                  |
| DC Current into Outputs<br>                                   |
| Static Discharge Voltage (per JEDEC EIA./                     |
| JESD22-A114A)>2001V                                           |
| Latch-Up Current>200 mA                                       |

| Range      | Ambient<br>Temperature   | Junction<br>Temperature | Output<br>Condition | V <sub>CCIO</sub>          | v <sub>cc</sub>   | V <sub>CCJTAG</sub> /<br>V <sub>CCCNFG</sub> | V <sub>CCPLL</sub> | V <sub>CCPRG</sub> |
|------------|--------------------------|-------------------------|---------------------|----------------------------|-------------------|----------------------------------------------|--------------------|--------------------|
|            | 0°C to +70°C             | 0°C to +85°C            | 3.3V                | 3.3V ± 0.3V                | $3.3V \pm 0.3V$   | Same as                                      | Same               | 3.3V               |
| Commercial |                          |                         | 2.5V                | 2.5V ± 0.2V                | or<br>2.5V ± 0.2V | V <sub>CCIO</sub>                            | as V <sub>CC</sub> | ±<br>0.3∨          |
| Commercial |                          |                         | 1.8V                | 1.8V ± 0.15V               | (39KV)            |                                              |                    | 0.01               |
|            |                          |                         | 1.5V                | 1.5V ± 0.1V <sup>[6]</sup> |                   |                                              |                    |                    |
| Industrial | $-40^{\circ}$ C to +85°C | -40°C to +100°C         | 3.3V                | 3.3V ± 0.3V                | 1.8V±0.15V        |                                              |                    |                    |
|            |                          |                         | 2.5V                | 2.5V ± 0.2V                | (39KZ)            |                                              |                    |                    |
|            |                          |                         | 1.8V                | 1.8V ± 0.15V               |                   |                                              |                    |                    |
|            |                          |                         | 1.5V                | 1.5V ± 0.1V <sup>[6]</sup> |                   |                                              |                    |                    |

## **DC Characteristics**

|                                |                                                                                  |                                                               | V <sub>CCIO</sub> | = 3.3 V                          | V <sub>CCIO</sub> | = 2.5 V                          | V <sub>CCIO</sub> |                                   |      |
|--------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|----------------------------------|-------------------|----------------------------------|-------------------|-----------------------------------|------|
| Parameter                      | Description                                                                      | Test Conditions                                               | Min.              | Max.                             | Min.              | Max.                             | Min.              | Max.                              | Unit |
| V <sub>DRINT</sub>             | Data Retention V <sub>CC</sub> Voltage<br>(config data may be lost below this)   |                                                               | 1.5               |                                  | 1.5               |                                  | 1.5               |                                   | V    |
| V <sub>DRIO</sub>              | Data Retention V <sub>CCIO</sub> Voltage<br>(config data may be lost below this) |                                                               | 1.2               |                                  | 1.2               |                                  | 1.2               |                                   | V    |
| I <sub>IX</sub>                | Input Leakage Current                                                            | $GND \leq V_{I} \leq 3.6V$                                    | -10               | 10                               | -10               | 10                               | -10               | 10                                | μΑ   |
| I <sub>OZ</sub>                | Output Leakage Current                                                           | $GND \le V_O \le V_{CCIO}$                                    | -10               | 10                               | -10               | 10                               | -10               | 10                                | μΑ   |
| I <sub>OS</sub> <sup>[8]</sup> | Output Short Circuit Current                                                     | V <sub>CCIO</sub> = Max.,<br>V <sub>OUT</sub> = 0.5V          |                   | -160                             |                   | -160                             |                   | -160                              | mA   |
| I <sub>BHL</sub>               | Input Bus Hold LOW Sustaining<br>Current                                         | $V_{CC} = Min.,$<br>$V_{PIN} = V_{IL}$                        | +40               |                                  | +30               |                                  | +25               |                                   | μΑ   |
| I <sub>BHH</sub>               | Input Bus Hold HIGH Sustaining<br>Current                                        | V <sub>CC</sub> = Min.,<br>V <sub>PIN</sub> = V <sub>IH</sub> | -40               |                                  | -30               |                                  | -25               |                                   | μΑ   |
| I <sub>BHLO</sub>              | Input Bus Hold LOW Overdrive Current                                             | V <sub>CC</sub> = Max.                                        |                   | +250                             |                   | +200                             |                   | +150                              | μA   |
| I <sub>BHHO</sub>              | Input Bus Hold HIGH Overdrive Current                                            | V <sub>CC</sub> = Max.                                        |                   | -250                             |                   | -200                             |                   | -150                              | μA   |
| I <sub>CC0</sub>               | Standby Current                                                                  | 39K30<br>39K50<br>39K100<br>39K165<br>39K200                  |                   | 20<br>20<br>20<br>20<br>20<br>20 |                   | 20<br>20<br>20<br>20<br>20<br>20 |                   | 0.3<br>0.3<br>0.6<br>1.25<br>1.25 | mA   |

Notes:

7. DC current into outputs is 36 mA with HSTL III, 48 mA with HSTL IV and 36 mA with GTL+ (with 25 $\Omega$  pull-up resistor and V<sub>TT</sub> = 1.5

Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V<sub>OUT</sub> = 0.5V has been chosen to avoid test problems caused by tester ground degradation. Tested initially and after any design or process changes that may affect these parameters.



## Capacitance

| Parameter        | Description                              | Test Conditions                                   | Min. | Max. | Unit |
|------------------|------------------------------------------|---------------------------------------------------|------|------|------|
| C <sub>I/O</sub> | Input/Output Capacitance                 | V <sub>in</sub> =V <sub>CCIO</sub> @ f=1 MHz 25°C |      | 10   | pF   |
| C <sub>CLK</sub> | Clock Signal Capacitance                 | V <sub>in</sub> =V <sub>CCIO</sub> @ f=1 MHz 25°C | 5    | 12   | pF   |
| C <sub>PCI</sub> | PCI Compliant <sup>[9]</sup> Capacitance | V <sub>in</sub> =V <sub>CCIO</sub> @ f=1 MHz 25°C |      | 8    | рF   |

## **DC Characteristics (IO)**<sup>[10]</sup>

| Input/               | V <sub>RE</sub> | <sub>F</sub> (V) |                     | Vo                                                             | <sub>он</sub> (V)        | V <sub>OL</sub>           | (V)                  | V <sub>IH</sub>       | (V)                    | ١     | / <sub>IL</sub> (V)    |
|----------------------|-----------------|------------------|---------------------|----------------------------------------------------------------|--------------------------|---------------------------|----------------------|-----------------------|------------------------|-------|------------------------|
| Output Stan-<br>dard | Stan-           |                  | @ I <sub>OH</sub> = | @ I <sub>OH</sub> = V <sub>OH</sub> (min.) @ I <sub>OL</sub> = |                          | V <sub>OL</sub><br>(max.) | Min.                 | Max.                  | Min.                   | Max.  |                        |
| LVTTL -2mA           | N/              | /A               | 3.3                 | –2 mA                                                          | 2.4                      | 2 mA                      | 0.4                  | 2.0 V                 | V <sub>CCIO</sub> +0.3 | -0.3V | 0.8V                   |
| LVTTL -4mA           |                 |                  | 3.3                 | –4 mA                                                          | 2.4                      | 4 mA                      | 0.4                  | 2.0 V                 | V <sub>CCIO</sub> +0.3 | -0.3V | 0.8V                   |
| LVTTL -6mA           |                 |                  | 3.3                 | –6 mA                                                          | 2.4                      | 6 mA                      | 0.4                  | 2.0 V                 | V <sub>CCIO</sub> +0.3 | -0.3V | 0.8V                   |
| LVTTL -8mA           |                 |                  | 3.3                 | –8 mA                                                          | 2.4                      | 8 mA                      | 0.4                  | 2.0 V                 | V <sub>CCIO</sub> +0.3 | -0.3V | 0.8V                   |
| LVTTL -12mA          |                 |                  | 3.3                 | –12 mA                                                         | 2.4                      | 12 mA                     | 0.4                  | 2.0 V                 | V <sub>CCIO</sub> +0.3 | -0.3V | 0.8V                   |
| LVTTL -16mA          |                 |                  | 3.3                 | –16 mA                                                         | 2.4                      | 16 mA                     | 0.4                  | 2.0 V                 | V <sub>CCIO</sub> +0.3 | -0.3V | 0.8V                   |
| LVTTL -24mA          |                 |                  | 3.3                 | –24 mA                                                         | 2.4                      | 24 mA                     | 0.4                  | 2.0 V                 | V <sub>CCIO</sub> +0.3 | -0.3V | 0.8V                   |
| LVCMOS               |                 |                  | 3.3                 | –0.1 mA                                                        | V <sub>CCIO</sub> -0.2v  | 0.1 mA                    | 0.2                  | 2.0 V                 | V <sub>CCIO</sub> +0.3 | -0.3V | 0.8V                   |
| LVCMOS3              |                 |                  | 3.0                 | –0.1 mA                                                        | V <sub>CCIO</sub> -0.2v  | 0.1mA                     | 0.2                  | 2.0 V                 | V <sub>CCIO</sub> +0.3 | –0.3V | 0.8V                   |
|                      |                 |                  | 2.5                 | –0.1 mA                                                        | 2.1                      | 0.1 mA                    | 0.2                  | 1.7 V                 | V <sub>CCIO</sub> +0.3 | -0.3V | 0.7V                   |
| LVCMOS2              |                 |                  |                     | –1.0 mA                                                        | 2.0                      | 1.0 mA                    | 0.4                  |                       |                        |       |                        |
|                      |                 |                  |                     | –2.0 mA                                                        | 1.7                      | 2.0 mA                    | 0.7                  |                       |                        |       |                        |
| LVCMOS18             |                 |                  | 1.8                 | – 2 mA                                                         | V <sub>CCIO</sub> -0.45v | 2.0 mA                    | 0.45                 | $0.65V_{CCIO}$        | V <sub>CCIO</sub> +0.3 | -0.3V | 0.35V <sub>CCIO</sub>  |
| 3.3V PCI             |                 |                  | 3.3                 | –0.5 mA                                                        | 0.9V <sub>CCIO</sub>     | 1.5 mA                    | 0.1V <sub>CCIO</sub> | 0.5V <sub>CCIO</sub>  | V <sub>CCIO</sub> +0.5 | -0.5V | 0.3V <sub>CCIO</sub>   |
| GTL+                 | 0.9             | 1.1              | [11]                |                                                                |                          | 36mA <sup>[12]</sup>      | 0.6                  | V <sub>REF</sub> +0.2 |                        |       | V <sub>REF</sub> 0.2   |
| SSTL3 I              | 1.3             | 1.7              | 3.3                 | –8 mA                                                          | V <sub>CCIO</sub> -1.1v  | 8 mA                      | 0.7                  | V <sub>REF</sub> +0.2 | V <sub>CCIO</sub> +0.3 | –0.3V | V <sub>REF</sub> -0.2  |
| SSTL3 II             | 1.3             | 1.7              | 3.3                 | –16 mA                                                         | V <sub>CCIO</sub> –0.9v  | 16 mA                     | 0.5                  | V <sub>REF</sub> +0.2 | V <sub>CCIO</sub> +0.3 | -0.3V | V <sub>REF</sub> -0.2  |
| SSTL2 I              | 1.15            | 1.35             | 2.5                 | –7.6 mA                                                        | V <sub>CCIO</sub> -0.62v | 7.6 mA                    | 0.54                 | V <sub>REF</sub> +.18 | V <sub>CCIO</sub> +0.3 | -0.3V | V <sub>REF</sub> -0.18 |
| SSTL2 II             | 1.15            | 1.35             | 2.5                 | –15.2 mA                                                       | V <sub>CCIO</sub> -0.43v | 15.2 mA                   | 0.35                 | V <sub>REF</sub> +.18 | V <sub>CCIO</sub> +0.3 | -0.3V | V <sub>REF</sub> -0.18 |
| HSTL I               | 0.68            | 0.9              | 1.5                 | –8 mA                                                          | V <sub>CCIO</sub> -0.4v  | 8 mA                      | 0.4                  | V <sub>REF</sub> +.10 | V <sub>CCIO</sub> +0.3 | -0.3V | V <sub>REF</sub> -0.1  |
| HSTL II              | 0.68            | 0.9              | 1.5                 | –16 mA                                                         | V <sub>CCIO</sub> –0.4v  | 16 mA                     | 0.4                  | V <sub>REF</sub> +0.1 | V <sub>CCIO</sub> +0.3 | -0.3V | V <sub>REF</sub> 0.1   |
| HSTL III             | 0.68            | 0.9              | 1.5                 | –8 mA                                                          | V <sub>CCIO</sub> -0.4v  | 24 mA                     | 0.4                  | V <sub>REF</sub> +0.1 | V <sub>CCIO</sub> +0.3 | –0.3V | V <sub>REF</sub> -0.1  |
| HSTL IV              | 0.68            | 0.9              | 1.5                 | –8 mA                                                          | V <sub>CCIO</sub> –0.4v  | 48 mA                     | 0.4                  | V <sub>REF</sub> +0.1 | $V_{CCIO}$ +0.3        | –0.3V | V <sub>REF</sub> -0.1  |

#### Notes:

PCI spec (rev 2.2) requires the IDSEL pin to have capacitance less than or equal to 8 pF. Document titled "Delta39K Pin Tables" identifies all the I/O pins, in a given package, which can be used as IDSEL in a PCI design. All other I/O pins meet the PCI requirement of capacitance less than or equal to 10 pf.
The number of I/Os which can be used in each I/O bank depends on the type of I/O standards and the number of V<sub>CCIO</sub> and GND pins being used. Please refer

to the application note titled "Delta39K and Quantum38K I/O Standards and Configurations" for details. • The source current limit per I/O bank per Vccio pin is 165 mA

- The sink current limit per I/O bank per GND pin is 230 mA 11. See "Power-up Sequence Requirements" below for  $V_{\rm CCIO}$  requirement.
- 12.  $25\Omega$  resistor terminated to termination voltage of 1.5V.



## **Configuration Parameters**

| Parameter             | Description                               | Min. | Unit |
|-----------------------|-------------------------------------------|------|------|
| t <sub>RECONFIG</sub> | Reconfig pin LOW time before it goes HIGH | 200  | ns   |

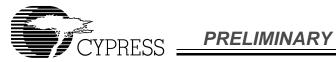
## **Power-up Sequence Requirements**

- Upon power-up, all the outputs remain three-stated until all the  $V_{CC}$  pins have powered-up to the nominal voltage and the part has completed configuration.
- The part will not start configuration until V<sub>CC</sub>, V<sub>CCIO</sub>, V<sub>CCJTAG</sub>, V<sub>CCCNFG</sub>, V<sub>CCPLL</sub> and V<sub>CCPRG</sub> have reached nominal voltage.
- $V_{CC}$  pins can be powered up in any order. This includes  $V_{CC}$ ,  $V_{CCIO}$ ,  $V_{CCJTAG}$ ,  $V_{CCCNFG}$ ,  $V_{CCPLL}$  and  $V_{CCPRG}$ .
- All  $\mathsf{V}_{\mathsf{CCIO}}\mathsf{s}$  on a bank should be tied to the same potential and powered up together.
- All  $V_{CCIO}s$  (even the unused banks) need to be powered up to at least 1.5V before configuration has completed.
- Maximum ramp time for all  $V_{CC} s$  should be 0V to nominal voltage in 100 ms.




## Switching Characteristics - Parameter Descriptions Over the Operating Range [13]

| Description                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ode Parameters                                                                                                                                                                                |
| Delay from any pin input, through any cluster on the channel associated with that pin input, to any pin output on the horizontal or vertical channel associated with that cluster             |
| Global control to output enable                                                                                                                                                               |
| Global control to output disable                                                                                                                                                              |
| Asynchronous macrocell RESET or PRESET recovery time from any pin input on the horizontal or vertical channel associated with the cluster the macrocell is in                                 |
| Asynchronous macrocell RESET or PRESET from any pin input on the horizontal or vertical channel associated with the cluster that the macrocell is in to any pin output on those same channels |
| Asynchronous macrocell RESET or PRESET minimum pulse width, from any pin input to a macrocell in the farthest cluster on the horizontal or vertical channel the pin is associated with        |
| ocking Parameters                                                                                                                                                                             |
| Set-up time of any input pin to a macrocell in any cluster on the channel associated with that input pin, relative to a global clock                                                          |
| Hold time of any input pin to a macrocell in any cluster on the channel associated with that input pin, relative to a global clock                                                            |
| Global clock to output of any macrocell to any output pin on the horizontal or vertical channel associated with the cluster that macrocell is in                                              |
| Set-up time of any input pin to the I/O cell register associated with that pin, relative to a global clock                                                                                    |
| Hold time of any input pin to the I/O cell register associated with that pin, relative to a global clock                                                                                      |
| Clock to output of an I/O cell register to the output pin associated with that register                                                                                                       |
| Macrocell clock to macrocell clock through array logic within the same cluster                                                                                                                |
| Macrocell clock to macrocell clock through array logic in different clusters on the same channel                                                                                              |
| I/O register clock to any macrocell clock in a cluster on the channel the I/O register is associated with                                                                                     |
| Macrocell clock to any I/O register clock on the horizontal or vertical channel associated with the cluster that the macrocell is in                                                          |
| Clock to output disable (high-impedance)                                                                                                                                                      |
| Clock to output enable (low-impedance)                                                                                                                                                        |
| Maximum frequency with internal feedback—within the same cluster                                                                                                                              |
| Maximum frequency with internal feedback—within different clusters at the opposite ends of a horizontal or vertical channel                                                                   |
| ock                                                                                                                                                                                           |
| Set-up time for macrocell used as input register, from input to product term clock                                                                                                            |
| Hold time of macrocell used as an input register                                                                                                                                              |
| Product term clock to output delay from input pin                                                                                                                                             |
| Register to register delay through array logic in different clusters on the same channel using a product term clock                                                                           |
| nnect Parameters                                                                                                                                                                              |
| Adder for a signal to switch from a horizontal to vertical channel and vice-versa                                                                                                             |
| Cluster to Cluster delay adder (through channels and channel PIM)                                                                                                                             |
|                                                                                                                                                                                               |


#### Note:

13. Add t<sub>CHSW</sub> to signals making a horizontal to vertical channel switch or vice-versa.



# Switching Characteristics - Parameter Descriptions Over the Operating Range <sup>[13]</sup> (continued)

| Parameter             | Description                                                                                                                                                                                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Miscellaneous D       | Delays                                                                                                                                                                                                                                                    |
| t <sub>CPLD</sub>     | Delay from the input of a cluster PIM, through a macrocell in the cluster, back to a cluster PIM input. This parameter can be added to the $t_{PD}$ and $t_{SCS}$ parameters for each extra pass through the AND/OR array required by a given signal path |
| t <sub>MCCD</sub>     | Adder for carry chain logic per macrocell                                                                                                                                                                                                                 |
| t <sub>IOD</sub>      | Delay from the input of the output buffer to the I/O pin                                                                                                                                                                                                  |
| t <sub>IOIN</sub>     | Delay from the I/O pin to the input of the channel buffer                                                                                                                                                                                                 |
| t <sub>CKIN</sub>     | Delay from the clock pin to the input of the clock driver                                                                                                                                                                                                 |
| t <sub>IOREGPIN</sub> | Delay from the I/O pin to the input of the I/O register                                                                                                                                                                                                   |
| PLL Parameters        |                                                                                                                                                                                                                                                           |
| t <sub>MCCJ</sub>     | Maximum cycle to cycle jitter time                                                                                                                                                                                                                        |
| t <sub>DWSA</sub>     | PLL zero phase delay with clock tree deskewed                                                                                                                                                                                                             |
| t <sub>DWOSA</sub>    | PLL zero phase delay without clock tree deskewed                                                                                                                                                                                                          |
| t <sub>LOCK</sub>     | Lock time for the PLL                                                                                                                                                                                                                                     |
| f <sub>PLLO</sub>     | Output frequency of the PLL                                                                                                                                                                                                                               |
| f <sub>PLLI</sub>     | Input frequency of the PLL                                                                                                                                                                                                                                |
| JTAG Parameter        | s                                                                                                                                                                                                                                                         |
| t <sub>JCKH</sub>     | TCLK HIGH time                                                                                                                                                                                                                                            |
| t <sub>JCKL</sub>     | TCLK LOW time                                                                                                                                                                                                                                             |
| t <sub>JCP</sub>      | TCLK clock period                                                                                                                                                                                                                                         |
| t <sub>JSU</sub>      | JTAG port setup time (TDI/TMS inputs)                                                                                                                                                                                                                     |
| t <sub>JH</sub>       | JTAG port hold time (TDI/TMS inputs)                                                                                                                                                                                                                      |
| t <sub>JCO</sub>      | JTAG port clock to output time (TDO)                                                                                                                                                                                                                      |
| t <sub>JXZ</sub>      | JTAG port valid output to high impedance (TDO)                                                                                                                                                                                                            |
| t <sub>JZX</sub>      | JTAG port high impedance to valid output (TDO)                                                                                                                                                                                                            |



## Cluster Memory Timing Parameter Descriptions Over the Operating Range

| Parameter             | Description                                                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Asynchronous          | Mode Parameters                                                                                                                                               |
| t <sub>CLMAA</sub>    | Cluster memory access time. Delay from address change to read data out                                                                                        |
| t <sub>CLMPWE</sub>   | Write Enable pulse width                                                                                                                                      |
| t <sub>CLMSA</sub>    | Address set-up to the beginning of Write Enable with both signals from the same I/O block                                                                     |
| t <sub>CLMHA</sub>    | Address hold after the end of Write Enable with both signals from the same I/O block                                                                          |
| t <sub>CLMSD</sub>    | Data set-up to the end of Write Enable                                                                                                                        |
| t <sub>CLMHD</sub>    | Data hold after the end of Write Enable                                                                                                                       |
| Synchronous Mo        | ode Parameters                                                                                                                                                |
| t <sub>CLMCYC1</sub>  | Clock cycle time for flow through read and write operations (from macrocell register through cluster memory back to a macrocell register in the same cluster) |
| t <sub>CLMCYC2</sub>  | Clock cycle time for pipelined read and write operations (from cluster memory input register through the memory to cluster memory output register)            |
| t <sub>CLMS</sub>     | Address, data, and WE set-up time of pin inputs, relative to a global clock                                                                                   |
| t <sub>CLMH</sub>     | Address, data, and WE hold time of pin inputs, relative to a global clock                                                                                     |
| t <sub>CLMDV1</sub>   | Global clock to data valid on output pins for flow through data                                                                                               |
| t <sub>CLMDV2</sub>   | Global clock to data valid on output pins for pipelined data                                                                                                  |
| t <sub>CLMMACS1</sub> | Cluster memory input clock to macrocell clock in the same cluster                                                                                             |
| t <sub>CLMMACS2</sub> | Cluster memory output clock to macrocell clock in the same cluster                                                                                            |
| t <sub>MACCLMS1</sub> | Macrocell clock to cluster memory input clock in the same cluster                                                                                             |
| t <sub>MACCLMS2</sub> | Macrocell clock to cluster memory output clock in the same cluster                                                                                            |
| Internal Paramet      | ers                                                                                                                                                           |
| t <sub>CLMCLAA</sub>  | Asynchronous cluster memory access time from input of cluster memory to output of cluster memory                                                              |



## Channel Memory Timing Parameter Descriptions Over the Operating Range

| Parameter             | Description                                                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dual Port Async       | hronous Mode Parameters                                                                                                                                       |
| t <sub>CHMAA</sub>    | Channel memory access time. Delay from address change to read data out                                                                                        |
| <sup>t</sup> CHMPWE   | Write enable pulse width                                                                                                                                      |
| t <sub>CHMSA</sub>    | Address set-up to the beginning of write enable with both signals from the same I/O block                                                                     |
| t <sub>CHMHA</sub>    | Address hold after the end of write enable with both signals from the same I/O block                                                                          |
| t <sub>CHMSD</sub>    | Data set-up to the end of write enable                                                                                                                        |
| t <sub>CHMHD</sub>    | Data hold after the end of write enable                                                                                                                       |
| t <sub>CHMBA</sub>    | Channel memory asynchronous dual port address match (busy access time)                                                                                        |
|                       | ronous Mode Parameters                                                                                                                                        |
| t <sub>CHMCYC1</sub>  | Clock cycle time for flow through read and write operations (from macrocell register through channel memory back to a macrocell register in the same cluster) |
| t <sub>CHMCYC2</sub>  | Clock cycle time for pipelined read and write operations (from channel memory input register through the memory to channel memory output register)            |
| t <sub>CHMS</sub>     | Address, data, and WE set-up time of pin inputs, relative to a global clock                                                                                   |
| t <sub>CHMH</sub>     | Address, data, and WE hold time of pin inputs, relative to a global clock                                                                                     |
| t <sub>CHMDV1</sub>   | Global clock to data valid on output pins for flow through data                                                                                               |
| t <sub>CHMDV2</sub>   | Global clock to data valid on output pins for pipelined data.                                                                                                 |
| t <sub>CHMBDV</sub>   | Channel memory synchronous dual-port address match (busy, clock to data valid)                                                                                |
| t <sub>CHMMACS1</sub> | Channel memory input clock to macrocell clock in the same cluster                                                                                             |
| t <sub>CHMMACS2</sub> | Channel memory output clock to macrocell clock in the same cluster                                                                                            |
| t <sub>MACCHMS1</sub> | Macrocell clock to channel memory input clock in the same cluster                                                                                             |
| t <sub>MACCHMS2</sub> | Macrocell clock to channel memory output clock in the same cluster                                                                                            |
| Synchronous Fl        | FO Data Parameters                                                                                                                                            |
| <sup>t</sup> CHMCLK   | Read and write minimum clock cycle time                                                                                                                       |
| t <sub>CHMFS</sub>    | Data, read enable, and write enable set-up time relative to pin inputs                                                                                        |
| t <sub>CHMFH</sub>    | Data, read enable, and write enable hold time relative to pin inputs                                                                                          |
| t <sub>CHMFRDV</sub>  | Data access time to output pins from rising edge of read clock (read clock to data valid)                                                                     |
| t <sub>CHMMACS</sub>  | Channel memory FIFO read clock to macrocell clock for read data                                                                                               |
| t <sub>MACCHMS</sub>  | Macrocell clock to channel memory FIFO write clock for write data                                                                                             |
| Synchronous Fl        | FO Flag Parameters                                                                                                                                            |
| t <sub>CHMFO</sub>    | Read or write clock to respective flag output at output pins                                                                                                  |
| t <sub>CHMMACF</sub>  | Read or write clock to macrocell clock with FIFO flag                                                                                                         |
| t <sub>CHMFRS</sub>   | Master Reset Pulse Width                                                                                                                                      |
| t <sub>CHMFRSR</sub>  | Master Reset Recovery Time                                                                                                                                    |
| t <sub>CHMFRSF</sub>  | Master Reset to Flag and Data Output Time                                                                                                                     |
| t <sub>CHMSKEW1</sub> | Read/Write Clock Skew Time for Full Flag                                                                                                                      |
| t <sub>CHMSKEW2</sub> | Read/Write Clock Skew Time for Empty Flag                                                                                                                     |
| t <sub>CHMSKEW3</sub> | Read/Write Clock Skew Time for Boundary Flags                                                                                                                 |
| Internal Paramet      | iers                                                                                                                                                          |
| t <sub>CHMCHAA</sub>  | Asynchronous channel memory access time from input of channel memory to output of channel memory                                                              |



#### 233 200 181 167 154 125 83 Parameter Min. Max. Unit **Combinatorial Mode Parameters** t<sub>PD</sub> 7.2 7.5 8.5 8.5 9.0 10 15 ns 4.5 5.0 5.6 6.5 7.5 9.0 10 t<sub>EA</sub> ns 4.5 5.0 5.3 6.5 7.5 9.0 10 t<sub>ER</sub> ns 6.0 6.0 6.0 6.0 7.0 8.0 10 ns t<sub>PRR</sub> 9.5 10 10.5 11 12 13 15 ns t<sub>PRO</sub> 3.3 3.6 4.0 4.5 5.0 6.0 7.0 t<sub>PRW</sub> ns Synchronous Clocking Parameters 2.7 3.0 3.5 3.5 4.0 5.0 6.0 ns t<sub>MCS</sub> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns t<sub>MCH</sub> 5.8 6.0 7.0 7.5 8.5 10 12 ns t<sub>MCCO</sub> 1.0 1.0 1.2 1.4 1.7 2.0 2.5 ns t<sub>IOS</sub> 0.9 1.0 1.2 1.4 1.7 2.0 2.5 t<sub>IOH</sub> ns 3.8 4.0 4.5 5.0 6.0 7.0 8.0 t<sub>IOCO</sub> ns 3.4 3.5 3.6 3.7 3.9 6.4 9.6 ns t<sub>SCS</sub> 4.3 5.7 6.2 8.0 4.5 5.5 12 t<sub>SCS2</sub> ns 4.5 5.0 5.5 6.0 6.5 8.0 12 ns t<sub>ICS</sub> 4.5 5.0 5.5 6.0 6.5 8.0 12 tocs ns 3.5 3.5 3.8 4.0 4.4 6.0 7.0 ns t<sub>CHZ</sub> 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ns t<sub>CLZ</sub> f<sub>MAX</sub> 294 286 278 270 256 156 104 MHz 233 222 181 167 154 125 83 MHz f<sub>MAX2</sub> **Product Term Clocking Parameters** 2.7 3.0 3.3 3.5 4.0 5.0 6.0 ns **t**<sub>MCSPT</sub> 0.9 1.0 1.4 1.4 1.7 2.0 2.5 t<sub>MCHPT</sub> ns 7.5 8.0 8.8 9.0 10.0 11.0 15.0 **t**<sub>MCCOPT</sub> ns 6.0 6.5 7.2 7.5 9.0 10.0 15.0 ns t<sub>SCS2PT</sub> **Channel Interconnect Parameters** 0.9 1.0 1.2 1.2 1.4 1.7 2.0 t<sub>CHSW</sub> ns 1.8 2.0 2.3 2.4 2.6 2.8 3.0 ns t<sub>CL2CL</sub> **Miscellaneous Parameters** 2.8 3.0 3.3 3.5 3.8 4.0 5.0 ns t<sub>CPLD</sub> 0.22 0.25 0.28 0.30 0.32 0.35 0.38 ns t<sub>MCCD</sub> **PLL Parameters** 0.65 0.5 0.50 0.50 0.55 0.58 0.60 t<sub>MCCJ</sub> ns ±350 ±350 ±350 $\pm 390$ $\pm 400$ $\pm 420$ ±460 t<sub>DWSA</sub> ps ±350 ±350 ±350 ±390 ±400 ±420 ±460 t<sub>DWOSA</sub> ps

## Switching Characteristics - Parameter Values Over the Operating Range

t<sub>LOCK</sub>

3.0

3.0

3.0

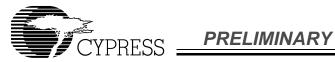
3.0

3.0

3.0

ms

3.0




## Switching Characteristics - Parameter Values Over the Operating Range (continued)

|                                   | 2     | 33   | 2    | 00   | 1    | 81   | 1    | 67   | 1    | 54   | 1    | 25   | 8    | 33   |      |
|-----------------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Parameter                         | Min.  | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit |
| f <sub>PLLO</sub> <sup>[14]</sup> | 6.2   | 266  | 6.2  | 266  | 6.2  | 266  | 6.2  | 266  | 6.2  | 266  | 6.2  | 200  | 6.2  | 200  | MHz  |
| f <sub>PLLI</sub> <sup>[14]</sup> | 12.5  | 133  | 12.5 | 133  | 12.5 | 133  | 12.5 | 133  | 12.5 | 133  | 12.5 | 100  | 12.5 | 100  | MHz  |
| JTAG Param                        | eters |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| t <sub>JCKH</sub>                 | 25    |      | 25   |      | 25   |      | 25   |      | 25   |      | 25   |      | 25   |      | ns   |
| t <sub>JCKL</sub>                 | 25    |      | 25   |      | 25   |      | 25   |      | 25   |      | 25   |      | 25   |      | ns   |
| t <sub>JCP</sub>                  | 50    |      | 50   |      | 50   |      | 50   |      | 50   |      | 50   |      | 50   |      | ns   |
| t <sub>JSU</sub>                  | 10    |      | 10   |      | 10   |      | 10   |      | 10   |      | 10   |      | 10   |      | ns   |
| t <sub>JH</sub>                   | 10    |      | 10   |      | 10   |      | 10   |      | 10   |      | 10   |      | 10   |      | ns   |
| t <sub>JCO</sub>                  |       | 20   |      | 20   |      | 20   |      | 20   |      | 20   |      | 20   |      | 20   | ns   |
| t <sub>JXZ</sub>                  |       | 20   |      | 20   |      | 20   |      | 20   |      | 20   |      | 20   |      | 20   | ns   |
| t <sub>JZX</sub>                  |       | 20   |      | 20   |      | 20   |      | 20   |      | 20   |      | 20   |      | 20   | ns   |

Note:

14. Refer to page 11 and the application note titled "Delta39K PLL and Clock Tree" for details on the PLL operation & specification



## Input & Output Standard Timing Delay Adjustments

All the timing specifications in this data sheet are specified based on LVCMOS compliant inputs and outputs (fast slew rates).<sup>[15]</sup> Apply following adjustments if the inputs and outputs are configured to operate at other standards.

| Input/Output  | Output De           | lay Adjustmen       | ts                  | Input Delay       | Input Delay Adjustments |                       |  |  |  |  |  |
|---------------|---------------------|---------------------|---------------------|-------------------|-------------------------|-----------------------|--|--|--|--|--|
| Standard      | t <sub>IOD</sub>    | t <sub>EA</sub>     | t <sub>ER</sub>     | t <sub>IOIN</sub> | t <sub>CKIN</sub>       | t <sub>IOREGPIN</sub> |  |  |  |  |  |
| LVTTL – 2 mA  | 3.5                 | 0                   | 0                   | 0                 | 0                       | 0                     |  |  |  |  |  |
| LVTTL – 4 mA  | 1.8                 | 0                   | 0                   | 0                 | 0                       | 0                     |  |  |  |  |  |
| LVTTL – 6 mA  | 1.8                 | 0                   | 0                   | 0                 | 0                       | 0                     |  |  |  |  |  |
| LVTTL – 8 mA  | 1.2                 | 0                   | 0                   | 0                 | 0                       | 0                     |  |  |  |  |  |
| LVTTL – 12 mA | 0.6                 | 0                   | 0                   | 0                 | 0                       | 0                     |  |  |  |  |  |
| LVTTL – 16 mA | 0.2                 | 0                   | 0                   | 0                 | 0                       | 0                     |  |  |  |  |  |
| LVTTL – 24 mA | 0.0                 | 0                   | 0                   | 0                 | 0                       | 0                     |  |  |  |  |  |
| LVCMOS        | 0.0                 | 0                   | 0                   | 0                 | 0                       | 0                     |  |  |  |  |  |
| LVCMOS3       | 0.2                 | 0.05                | 0                   | 0.1               | 0.1                     | 0.2                   |  |  |  |  |  |
| LVCMOS2       | 0.3                 | 0.1                 | 0                   | 0.2               | 0.2                     | 0.4                   |  |  |  |  |  |
| LVCMOS18      | 1.6                 | 0.7                 | 0.1                 | 0.5               | 0.4                     | 0.3                   |  |  |  |  |  |
| 3.3V PCI      | -0.2                | 0                   | 0                   | 0                 | 0                       | 0                     |  |  |  |  |  |
| GTL+          | 0.1 <sup>[16]</sup> | 0.6 <sup>[16]</sup> | 0.9 <sup>[16]</sup> | 0.5               | 0.4                     | 0.2                   |  |  |  |  |  |
| SSTL3 I       | -0.2                | 0.3                 | 0.1                 | 0.5               | 0.3                     | 0.3                   |  |  |  |  |  |
| SSTL3 II      | -0.5                | 0.2                 | 0                   | 0.5               | 0.3                     | 0.3                   |  |  |  |  |  |
| SSTL2 I       | -0.2                | 0.4                 | 0                   | 0.9               | 0.5                     | 0.6                   |  |  |  |  |  |
| SSTL2 II      | -0.4                | 0.2                 | 0                   | 0.9               | 0.5                     | 0.6                   |  |  |  |  |  |
| HSTL I        | 0.85                | 0.9                 | 0.5                 | 0.5               | 0.5                     | 0.3                   |  |  |  |  |  |
| HSTL II       | 0.55                | 0.8                 | 0.5                 | 0.5               | 0.5                     | 0.3                   |  |  |  |  |  |
| HSTL III      | 0.6                 | 0.5                 | 0.1                 | 0.5               | 0.5                     | 0.3                   |  |  |  |  |  |
| HSTL IV       | 0.5                 | 0.6                 | 0                   | 0.5               | 0.5                     | 0.3                   |  |  |  |  |  |

#### Notes:

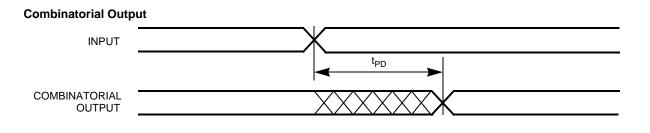
For "slow slew rate" output delay adjustments, refer to Warp software's static timing analyzer results.
These delays are based on falling edge output. The rising edge delay depends on the size of pull-up resistor and termination voltage.



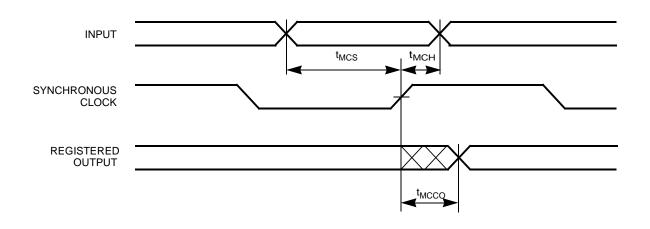
|                              | 233                 |       | 200   |      | 181  |      | 167  |      | 154  |      | 125  |      | 83   |      |      |
|------------------------------|---------------------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|
| Parameter                    | Min.                | Max.  | Min.  | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit |
| Asynchronous Mode Parameters |                     |       |       |      |      |      |      |      |      |      |      |      |      |      |      |
| t <sub>CLMAA</sub>           |                     | 10.2  |       | 11   |      | 12   |      | 13   |      | 15   |      | 17   |      | 20   | ns   |
| t <sub>CLMPWE</sub>          | 5.5                 |       | 6     |      | 6.5  |      | 7    |      | 8    |      | 10   |      | 12   |      | ns   |
| t <sub>CLMSA</sub>           | 1.8                 |       | 2.0   |      | 2.2  |      | 2.5  |      | 2.8  |      | 3.2  |      | 4.0  |      | ns   |
| t <sub>CLMHA</sub>           | 0.9                 |       | 1.0   |      | 1.1  |      | 1.2  |      | 1.5  |      | 1.8  |      | 2.0  |      | ns   |
| t <sub>CLMSD</sub>           | 5.5                 |       | 6.0   |      | 6.5  |      | 7.0  |      | 8.0  |      | 10   |      | 12   |      | ns   |
| t <sub>CLMHD</sub>           | 0.4                 |       | 0.5   |      | 0.6  |      | 0.7  |      | 0.8  |      | 0.9  |      | 1.0  |      | ns   |
| Synchronou                   | s Mode              | Param | eters |      |      |      |      |      |      |      |      |      |      |      |      |
| t <sub>CLMCYC1</sub>         | 9.5                 |       | 10    |      | 10.5 |      | 11   |      | 13   |      | 15   |      | 20   |      | ns   |
| t <sub>CLMCYC2</sub>         | 5.0                 |       | 5.0   |      | 5.5  |      | 6.0  |      | 7.0  |      | 8.0  |      | 10.0 |      | ns   |
| t <sub>CLMS</sub>            | 2.8                 |       | 3.0   |      | 3.8  |      | 3.5  |      | 3.8  |      | 4.0  |      | 5.0  |      | ns   |
| t <sub>CLMH</sub>            | 0.0                 |       | 0.0   |      | 0.0  |      | 0.0  |      | 0.0  |      | 0.0  |      | 0.0  |      | ns   |
| t <sub>CLMDV1</sub>          |                     | 10    |       | 11   |      | 12   |      | 13   |      | 15   |      | 17   |      | 20   | ns   |
| t <sub>CLMDV2</sub>          |                     | 7.0   |       | 7.5  |      | 8.0  |      | 8.5  |      | 9.0  |      | 10   |      | 15   | ns   |
| t <sub>CLMMACS1</sub>        | 7.7                 |       | 8.0   |      | 8.5  |      | 9.0  |      | 10   |      | 12   |      | 15   |      | ns   |
| t <sub>CLMMACS2</sub>        | 4.5                 |       | 5.0   |      | 5.5  |      | 6.0  |      | 7.0  |      | 8.0  |      | 10   |      | ns   |
| t <sub>MACCLMS1</sub>        | 3.6                 |       | 4.0   |      | 4.4  |      | 4.8  |      | 5.5  |      | 6.6  |      | 8.0  |      | ns   |
| t <sub>MACCLMS2</sub>        | 6.0                 |       | 6.5   |      | 7.0  |      | 7.5  |      | 8.5  |      | 10   |      | 12   |      | ns   |
| Internal Para                | Internal Parameters |       |       |      |      |      |      |      |      |      |      |      |      |      |      |
| t <sub>CLMCLAA</sub>         | 6                   |       | 6     |      | 6.5  |      | 7    |      | 8    |      | 10   |      | 12   |      | ns   |

## Cluster Memory Timing Parameter Values Over the Operating Range

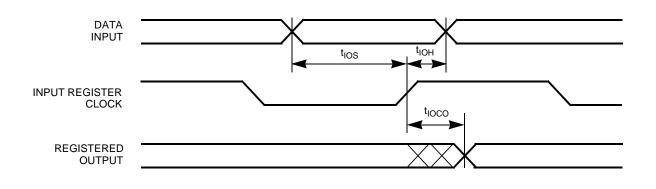



## **Channel Memory Timing Parameter Values**

|                       | 233    |          | 200     |         | 181  |      | 167  |      | 154  |      | 125  |      | 83   |      |      |
|-----------------------|--------|----------|---------|---------|------|------|------|------|------|------|------|------|------|------|------|
| Parameter             | Min.   | Max.     | Min.    | Max.    | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit |
| Dual-Port Asy         | ynchro | nous M   | ode Pa  | rametei | 'S   |      |      |      |      |      |      |      | 1    |      | 1    |
| t <sub>CHMAA</sub>    |        | 10       |         | 11      |      | 12   |      | 13   |      | 15   |      | 17   |      | 20   | ns   |
| t <sub>CHMPWE</sub>   | 5.5    |          | 6.0     |         | 6.5  |      | 7.0  |      | 8.0  |      | 10   |      | 12   |      | ns   |
| t <sub>CHMSA</sub>    | 1.8    |          | 2.0     |         | 2.2  |      | 2.5  |      | 2.8  |      | 3.2  |      | 4.0  |      | ns   |
| t <sub>CHMHA</sub>    | 0.9    |          | 1.0     |         | 1.1  |      | 1.2  |      | 1.5  |      | 1.8  |      | 2.0  |      | ns   |
| t <sub>CHMSD</sub>    | 5.5    |          | 6.0     |         | 6.5  |      | 7.0  |      | 8.0  |      | 10   |      | 12   |      | ns   |
| t <sub>CHMHD</sub>    | 0.4    |          | 0.5     |         | 0.6  |      | 0.7  |      | 0.8  |      | 0.9  |      | 1.0  |      | ns   |
| t <sub>CHMBA</sub>    |        | 8.5      |         | 9.0     |      | 10.0 |      | 11.0 |      | 12.0 |      | 14.0 |      | 16.0 | ns   |
| Dual-Port Syr         | nchron | ous Mo   | de Para | ameters | ;    |      | •    |      | •    | •    | •    | •    | •    |      |      |
| t <sub>CHMCYC1</sub>  | 9.5    |          | 10      |         | 10   |      | 11   |      | 13   |      | 15   |      | 20   |      | ns   |
| t <sub>CHMCYC2</sub>  | 4.8    |          | 5.0     |         | 5.4  |      | 5.8  |      | 6.2  |      | 7.4  |      | 10.6 |      | ns   |
| t <sub>CHMS</sub>     | 3.0    |          | 3.3     |         | 3.9  |      | 4.0  |      | 4.5  |      | 5.0  |      | 6.0  |      | ns   |
| t <sub>CHMH</sub>     | 0.0    |          | 0.0     |         | 0.0  |      | 0.0  |      | 0.0  |      | 0.0  |      | 0.0  |      | ns   |
| t <sub>CHMDV1</sub>   |        | 10       |         | 11      |      | 12   |      | 13   |      | 15   |      | 17   |      | 20   | ns   |
| t <sub>CHMDV2</sub>   |        | 7.0      |         | 7.5     |      | 8.0  |      | 8.5  |      | 9.0  |      | 10   |      | 15   | ns   |
| t <sub>CHMBDV</sub>   |        | 8.5      |         | 9.0     |      | 10.0 |      | 11.0 |      | 12.0 |      | 14.0 |      | 16.0 | ns   |
| t <sub>CHMMACS1</sub> | 8.5    |          | 9.0     |         | 10.0 |      | 11.0 |      | 12.0 |      | 14.0 |      | 16.0 |      | ns   |
| t <sub>CHMMACS2</sub> | 4.8    |          | 5.0     |         | 5.5  |      | 6.0  |      | 7.0  |      | 8.0  |      | 10   |      | ns   |
| t <sub>MACCHMS1</sub> | 4.6    |          | 5.0     |         | 5.4  |      | 5.8  |      | 6.5  |      | 7.6  |      | 9.0  |      | ns   |
| t <sub>MACCHMS2</sub> | 7.3    |          | 7.3     |         | 7.7  |      | 8.0  |      | 9.0  |      | 10.0 |      | 13.0 |      | ns   |
| Synchronous           | FIFO [ | Data Pa  | ramete  | rs      |      |      |      |      |      |      |      |      |      |      |      |
| t <sub>CHMCLK</sub>   | 4.8    |          | 5.0     |         | 5.4  |      | 5.8  |      | 6.2  |      | 7.4  |      | 10.6 |      | ns   |
| t <sub>CHMFS</sub>    | 3.7    |          | 4.0     |         | 4.3  |      | 4.5  |      | 5.0  |      | 6.0  |      | 7.0  |      | ns   |
| t <sub>CHMFH</sub>    | 0.0    |          | 0.0     |         | 0.0  |      | 0.0  |      | 0.0  |      | 0.0  |      | 0.0  |      | ns   |
| t <sub>CHMFRDV</sub>  |        | 6.5      |         | 7.0     |      | 7.5  |      | 8.0  |      | 9.0  |      | 10.0 |      | 13.0 |      |
| t <sub>CHMMACS</sub>  | 4.6    |          | 5.0     |         | 5.4  |      | 5.8  |      | 6.2  |      | 7.4  |      | 10.6 |      | ns   |
| t <sub>MACCHMS</sub>  | 4.7    |          | 5.0     |         | 5.4  |      | 5.8  |      | 6.2  |      | 7.4  |      | 10.6 |      | ns   |
| Synchronous           | FIFO F | Flag Par | ameter  | rs      |      |      |      |      |      |      |      |      |      |      |      |
| t <sub>CHMFO</sub>    | 10.5   |          | 11      |         | 11.5 |      | 12   |      | 13   |      | 15   |      | 20   |      | ns   |
| t <sub>CHMMACF</sub>  | 8.5    |          | 9       |         | 9.5  |      | 10   |      | 11   |      | 13   |      | 17   |      | ns   |
| t <sub>CHMFRS</sub>   | 4.5    |          | 5.0     |         | 5.5  |      | 6.0  |      | 7.0  |      | 8.0  |      | 10   |      | ns   |
| t <sub>CHMFRSR</sub>  |        | 3.6      |         | 4.0     |      | 4.4  |      | 4.8  |      | 5.5  |      | 6.6  |      | 8.0  | ns   |
| t <sub>CHMFRSF</sub>  |        | 9.5      |         | 10.0    |      | 11.0 |      | 12.0 |      | 13.0 |      | 15.0 |      | 18.0 | ns   |
| t <sub>CHMSKEW1</sub> |        | 1.8      |         | 2.0     |      | 2.2  |      | 2.4  |      | 2.6  |      | 3.2  |      | 4.0  | ns   |
| t <sub>CHMSKEW2</sub> |        | 1.8      |         | 2.0     |      | 2.2  |      | 2.4  |      | 2.6  |      | 3.2  |      | 4.0  | ns   |
| t <sub>CHMSKEW3</sub> |        | 4.6      |         | 5.0     |      | 5.4  |      | 5.8  |      | 6.2  |      | 7.4  |      | 10.6 | ns   |
| Internal Para         | meters |          |         |         |      |      |      |      |      |      |      |      |      |      |      |
| t <sub>CHMCHAA</sub>  | 6.5    |          | 7.0     |         | 7.5  |      | 8.0  |      | 9.0  |      | 10.0 |      | 13.0 |      | ns   |



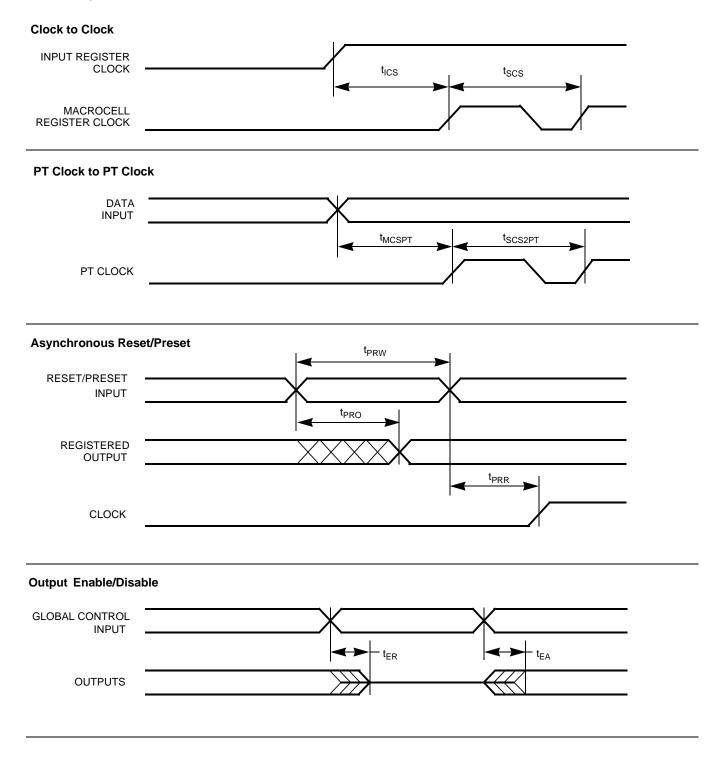

PRELIMINARY


## **Switching Waveforms**

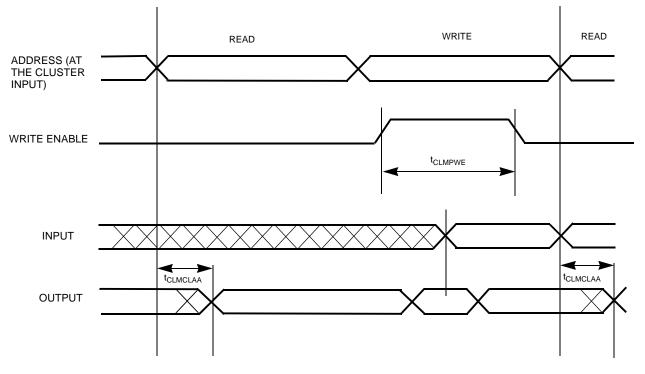


## Registered Output with Synchronous Clocking (Macrocell)



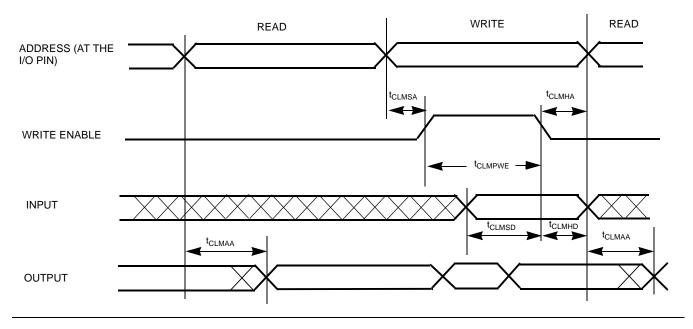

#### Registered Input in I/O Cell



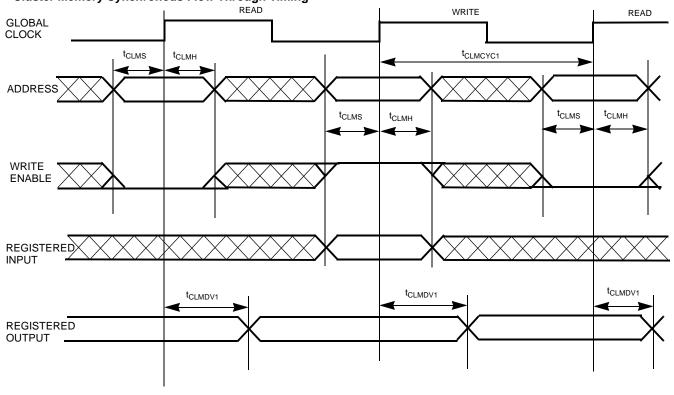



PRELIMINARY

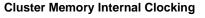
## Switching Waveforms (continued)

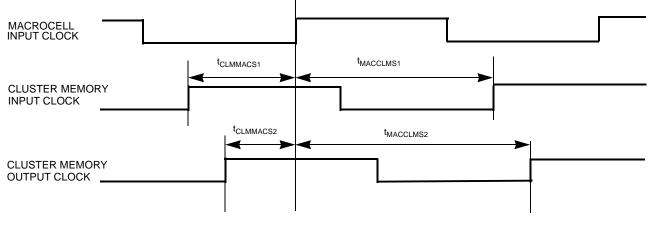


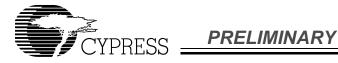



#### **Cluster Memory Asynchronous Timing**

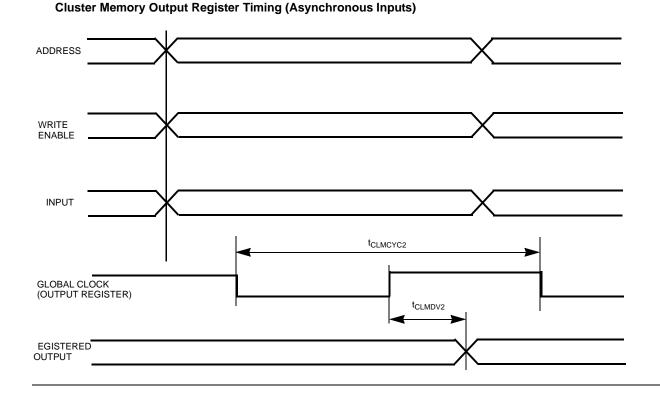

## **Cluster Memory Asynchronous Timing 2**



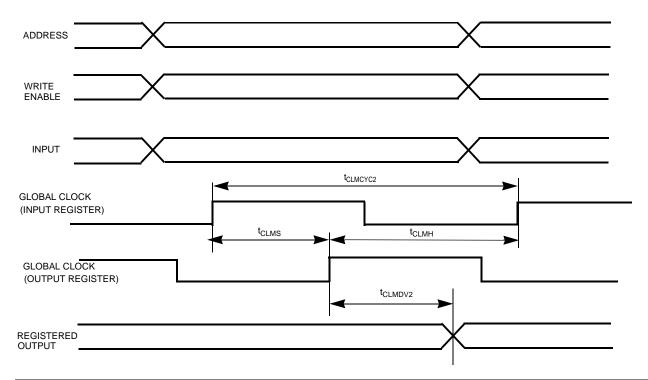






# Cluster Memory Synchronous Flow Through Timing

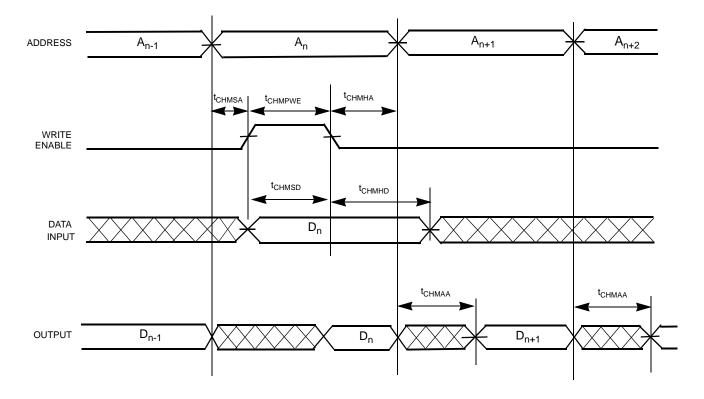


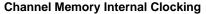


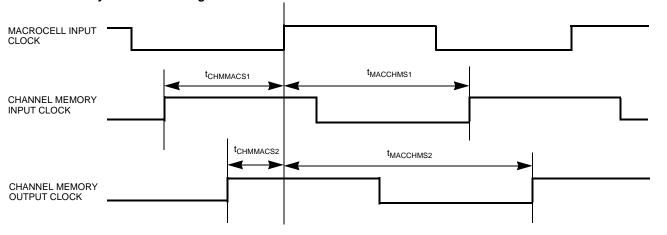




Delta39K<sup>™</sup> ISR<sup>™</sup> CPLD Family

## Switching Waveforms (continued)

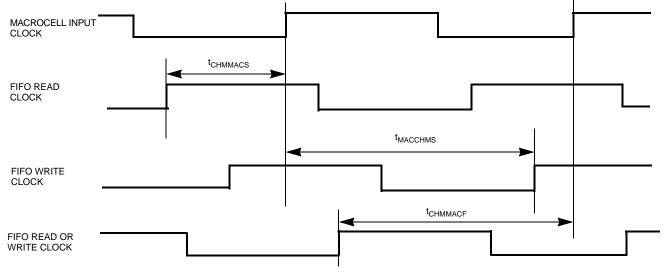




#### **Cluster Memory Output Register Timing (Synchronous Inputs)**

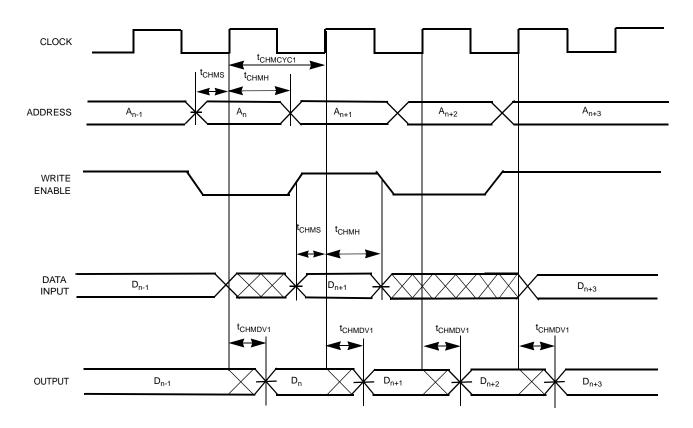


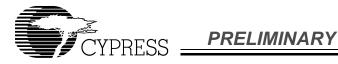



#### **Channel Memory DP Asynchronous Timing**

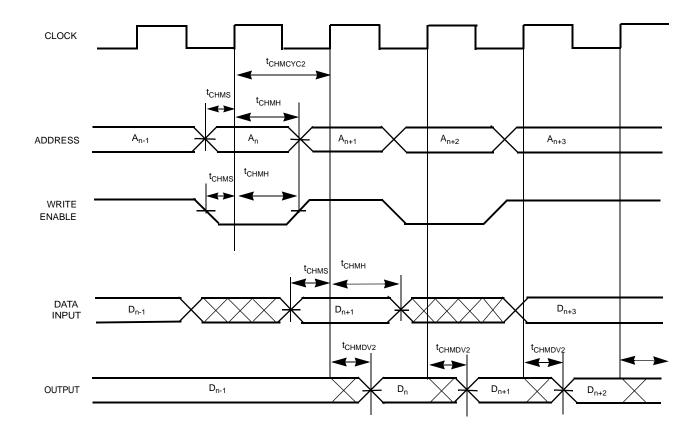


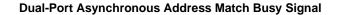


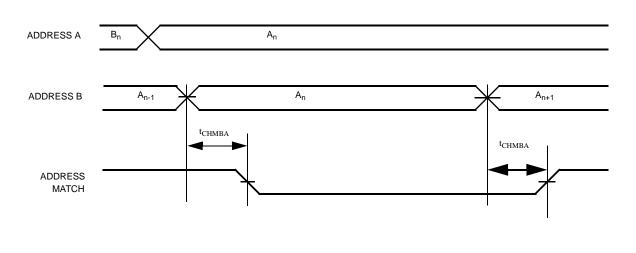




#### **Channel Memory Internal Clocking 2**





#### **Channel Memory DP SRAM Flow Through R/W Timing**

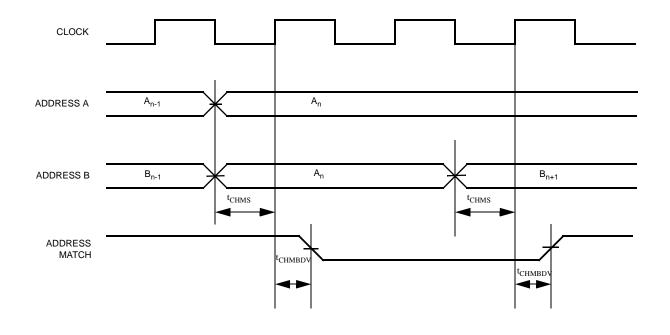





## Channel Memory DP SRAM Pipeline R/W Timing

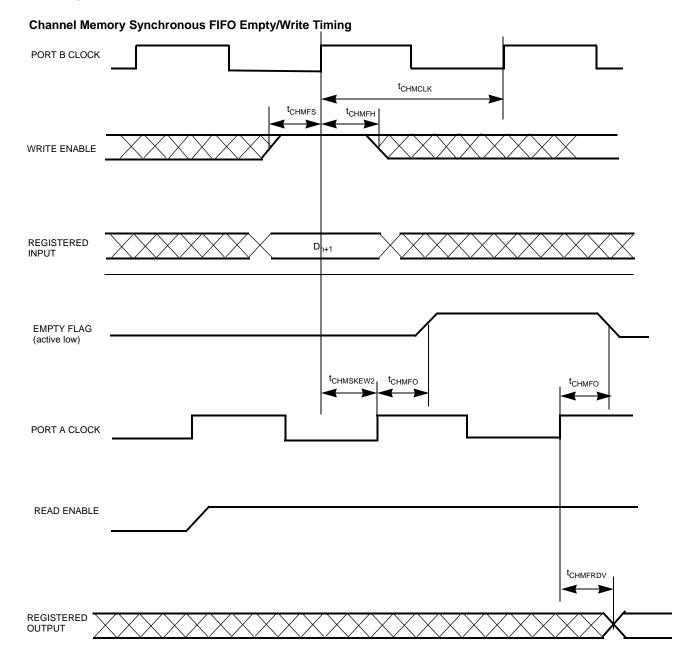


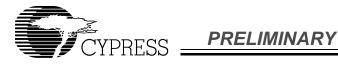






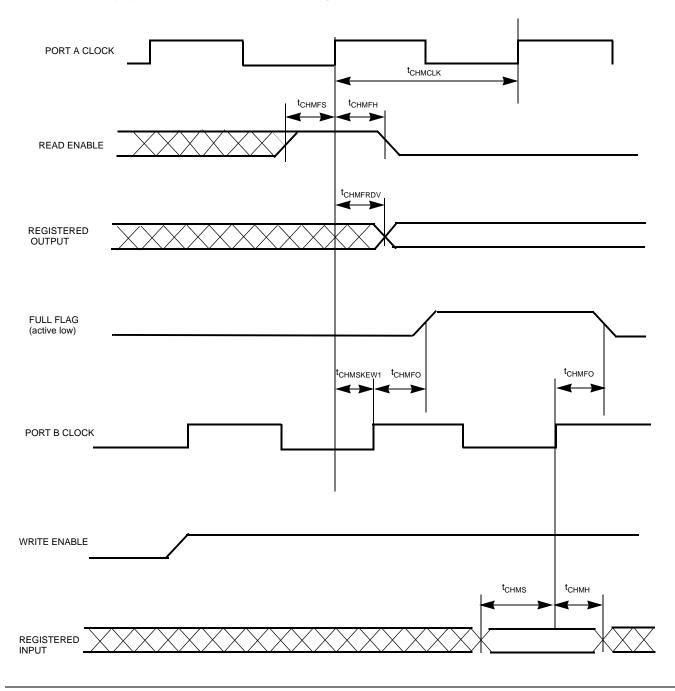

PRELIMINARY


## Switching Waveforms (continued)


## Dual-Port Synchronous Address Match Busy Signal



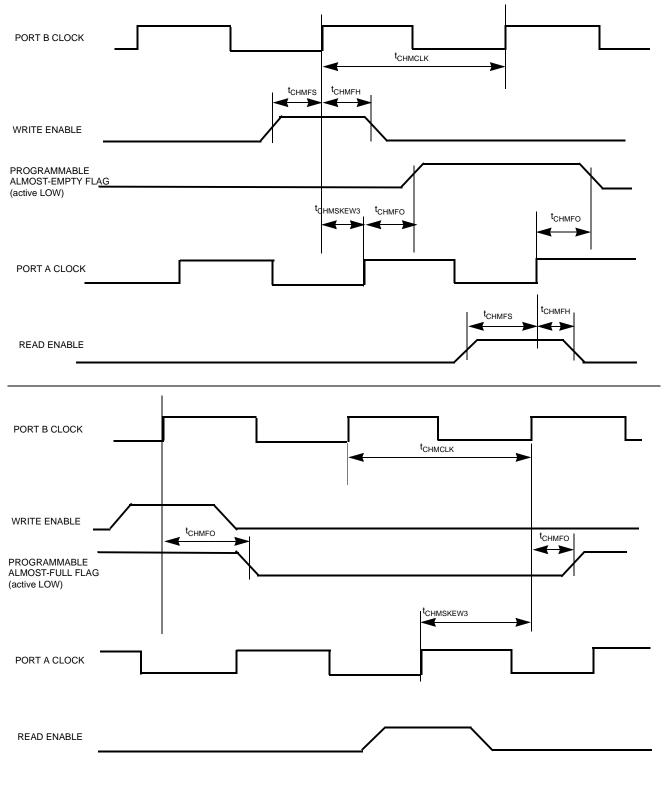



# Switching Waveforms (continued)





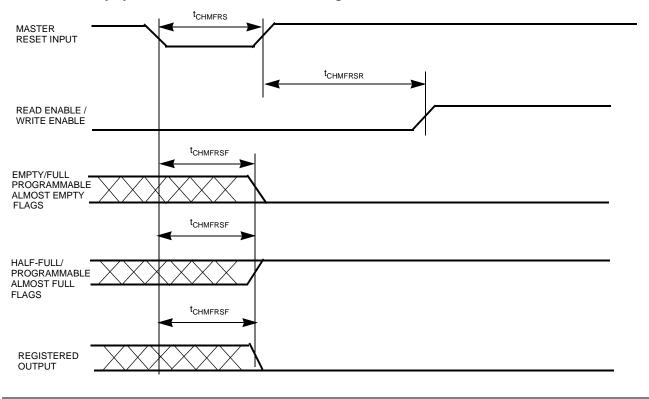
# Switching Waveforms (continued)


## Channel Memory Synchronous FIFO Full/Read Timing

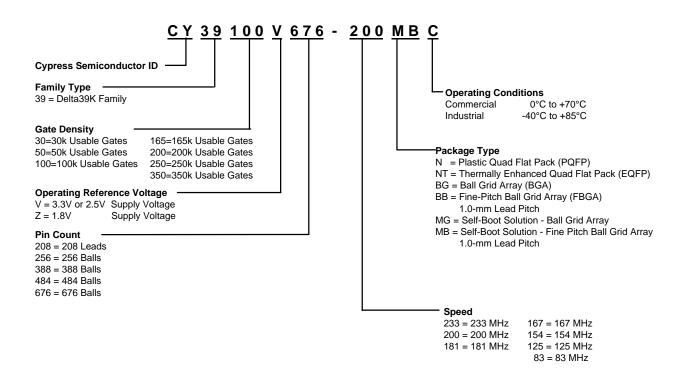




### Switching Waveforms (continued)


#### Channel Memory Synchronous FIFO Programmable Flag Timing






# Switching Waveforms (continued)

### Channel Memory Synchronous FIFO Master Reset Timing







## **Delta39K Pin Table**

Please refer to document titled "Delta39K Pin Tables" for pinouts of all the packages of all Delta39K family members. You can access this document on the internet at: http://www.cypress.com/pld/datasheets.html.

| Delta39K Part Numbers <sup>[17]</sup> (O | ordering Information) |
|------------------------------------------|-----------------------|
|------------------------------------------|-----------------------|

| Device | Speed<br>(MHz) | Ordering Code      | Package<br>Name | Package Type                        | Self-Boot<br>Solution | Operating<br>Range |
|--------|----------------|--------------------|-----------------|-------------------------------------|-----------------------|--------------------|
| 39K30  | 233            | CY39030V208-233NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercial         |
|        |                | CY39030Z208-233NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39030V256-233BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030Z256-233BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030V256-233MBC | MB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030Z256-233MBC | MB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        | 125            | CY39030V208-125NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       |                    |
|        |                | CY39030Z208-125NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39030V256-125BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030Z256-125BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030V256-125MBC | MB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030Z256-125MBC | MB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |



| Device | Speed<br>(MHz) | Ordering Code      | Package<br>Name | Package Type                        | Self-Boot<br>Solution | Operating<br>Range |
|--------|----------------|--------------------|-----------------|-------------------------------------|-----------------------|--------------------|
| 39K30  | 125            | CY39030V208-125NTI | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Industrial         |
|        |                | CY39030Z208-125NI  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39030V256-125BBI | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030Z256-125BBI | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030V256-125MBI | MB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030Z256-125MBI | MB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        | 83             | CY39030V208-83NTC  | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercial         |
|        |                | CY39030Z208-83NC   | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39030V256-83BBC  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030Z256-83BBC  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030V256-83MBC  | MB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030Z256-83MBC  | MB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030V208-83NTI  | NT208           | 208-Lead Plastic Quad Flat Pack     |                       | Industrial         |
|        |                | CY39030Z208-83NI   | N208            | 208-Lead Enhanced Quad Flat Pack    |                       |                    |
|        |                | CY39030V256-83BBI  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030Z256-83BBI  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030V256-83MBI  | MB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39030Z256-83MBI  | MB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
| 39K50  | 233            | CY39050V208-233NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercial         |
|        |                | CY39050Z208-233NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39050V256-233BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050Z256-233BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050V388-233MGC | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39050Z388-233MGC | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39050V484-233MBC | MB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050Z484-233MBC | MB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        | 125            | CY39050V208-125NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       |                    |
|        |                | CY39050Z208-125NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39050V256-125BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050Z256-125BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050V388-125MGC | MG388           | 388-Lead Pitch Ball Grid Array      |                       |                    |
|        |                | CY39050Z388-125MGC | MG388           | 388-Lead Pitch Ball Grid Array      |                       | 1                  |
|        |                | CY39050V484-125MBC | MB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050Z484-125MBC | MB484           | 484-Lead Fine Pitch Ball Grid Array |                       | 1                  |



| Device | Speed<br>(MHz) | Ordering Code      | Package<br>Name | Package Type                        | Self-Boot<br>Solution | Operating<br>Range |
|--------|----------------|--------------------|-----------------|-------------------------------------|-----------------------|--------------------|
| 39K50  | 125            | CY39050V208-125NTI | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Industrial         |
|        |                | CY39050Z208-125NI  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39050V256-125BBI | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050Z256-125BBI | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39050V388-125MBI | MG388           | 388-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050Z388-125MBI | MG388           | 388-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050V484-125MBI | MB484           | 484-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39050Z484-125MBI | MB484           | 484-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        | 83             | CY39050V208-83NTC  | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercial         |
|        |                | CY39050Z208-83NC   | N208            | 208-Lead Plastic Quad Flat Pack     |                       | -                  |
|        |                | CY39050V256-83BBC  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39050Z256-83BBC  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050V388-83MGC  | MG388           | 388-Lead Ball Grid Array            |                       | -                  |
|        |                | CY39050Z388-83MGC  | MG388           | 388-Lead Ball Grid Array            |                       | -                  |
|        |                | CY39050V484-83MBC  | MB484           | 484-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39050Z484-83MBC  | MB484           | 484-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39050V208-83NTI  | NT208           | 208-Lead Plastic Quad Flat Pack     |                       | Industrial         |
|        |                | CY39050Z208-83NI   | N208            | 208-Lead Enhanced Quad Flat Pack    |                       | -                  |
|        |                | CY39050V256-83BBI  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39050Z256-83BBI  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39050V388-83MGI  | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39050Z388-83MGI  | MG388           | 388-Lead Ball Grid Array            |                       | 1                  |
|        |                | CY39050V484-83MBI  | MB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39050Z484-83MBI  | MB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |



| Device | Speed<br>(MHz) | Ordering Code       | Package<br>Name | Package Type                        | Self-Boot<br>Solution | Operating<br>Range |
|--------|----------------|---------------------|-----------------|-------------------------------------|-----------------------|--------------------|
| 39K100 | 200            | CY39100V208-200NTC  | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercial         |
| [10]   |                | CY39100V256-200BBC  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V484-200BBC  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V388-200MGC  | MG388           | 388-Lead Ball Grid Array            | $\checkmark$          |                    |
|        |                | CY39100V676-200MBC  | MB676           | 676-Lead Fine Pitch Ball Grid Array | $\checkmark$          |                    |
|        |                | CY39100V208A-200NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       |                    |
|        |                | CY39100V256A-200BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V484A-200BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V388A-200MGC | MG388           | 388-Lead Ball Grid Array            | $\checkmark$          |                    |
|        |                | CY39100V676A-200MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array | $\checkmark$          |                    |
|        |                | CY39100V208B-200NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       |                    |
|        |                | CY39100Z208B-200NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39100V256B-200BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z256B-200BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V484B-200BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z484B-200BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V388B-200MGC | MG388           | 388-Lead Ball Grid Array            | $\checkmark$          |                    |
|        |                | CY39100Z388B-200MGC | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39100V676B-200MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z676B-200MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array | $\checkmark$          |                    |



| Device | Speed<br>(MHz) | Ordering Code       | Package<br>Name | Package Type                        | Self-Boot<br>Solution | Operating<br>Range |
|--------|----------------|---------------------|-----------------|-------------------------------------|-----------------------|--------------------|
| 39K100 | 125            | CY39100V208-125NTC  | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercial         |
| [10]   |                | CY39100V256-125BBC  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V484-125BBC  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V388-125MGC  | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39100V676-125MBC  | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V208A-125NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       |                    |
|        |                | CY39100V256A-125BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V484A-125BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V388A-125MGC | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39100V676A-125MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V208B-125NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       |                    |
|        |                | CY39100Z208B-125NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39100V256B-125BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z256B-125BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V484B-125BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z484B-125BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V388B-125MGC | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39100Z388B-125MGC | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39100V676B-125MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z676B-125MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V208B-125NTI | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Industrial         |
|        |                | CY39100Z208B-125NI  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39100V256B-125BBI | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z256B-125BBI | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V484B-125BBI | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z484B-125BBI | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       | 1                  |
|        |                | CY39100V388B-125MGI | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39100Z388B-125MGI | MG388           | 388-Lead Ball Grid Array            |                       | 1                  |
|        |                | CY39100V676B-125MBI | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z676B-125MBI | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |



| Device | Speed<br>(MHz) | Ordering Code      | Package<br>Name | Package Type                        | Self-Boot<br>Solution | Operating<br>Range |
|--------|----------------|--------------------|-----------------|-------------------------------------|-----------------------|--------------------|
| 39K100 | 83             | CY39100V208-83NTC  | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercial         |
| [10]   |                | CY39100V256-83BBC  | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39100V484-83BBC  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39100V388-83MGC  | MG388           | 388-Lead Ball Grid Array            |                       | -                  |
|        |                | CY39100V676-83MBC  | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39100V208A-83NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | -                  |
|        |                | CY39100V256A-83BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39100V484A-83BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39100V388A-83MGC | MG388           | 388-Lead Ball Grid Array            |                       | -                  |
|        |                | CY39100V676A-83MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V208B-83NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | -                  |
|        |                | CY39100Z208B-83NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       | -                  |
|        |                | CY39100V256B-83BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z256B-83BBC | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V484B-83BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       | -                  |
|        |                | CY39100Z484B-83BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V388B-83MGC | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39100Z388B-83MGC | MG388           | 388-Lead Ball Grid Array            |                       | -                  |
|        |                | CY39100V676B-83MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z676B-83MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V208B-83NTI | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Industrial         |
|        |                | CY39100Z208B-83NI  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39100V256B-83BBI | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z256B-83BBI | BB256           | 256-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100V484B-83BBI | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39100Z484B-83BBI | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       | 1                  |
|        |                | CY39100V388B-83MGI | MG388           | 388-Lead Ball Grid Array            |                       | 1                  |
|        |                | CY39100Z388B-83MGI | MG388           | 388-Lead Ball Grid Array            | $\checkmark$          | 1                  |
|        |                | CY39100V676B-83MBI | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       | 1                  |
|        |                | CY39100Z676B-83MBI | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |



| Device | Speed<br>(MHz) | Ordering Code      | Package<br>Name | Package Type                        | Self-Boot<br>Solution | Operating<br>Range |
|--------|----------------|--------------------|-----------------|-------------------------------------|-----------------------|--------------------|
| 39K165 | 181            | CY39165V208-181NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercial         |
|        |                | CY39165Z208-181NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39165V484-181BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165Z484-181BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165V388-181MGC | MG388           | 388-Lead Ball Grid Array            | $\checkmark$          |                    |
|        |                | CY39165Z388-181MGC | MG388           | 388-Lead Ball Grid Array            | $\checkmark$          |                    |
|        |                | CY39165V676-181MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array | $\checkmark$          |                    |
|        |                | CY39165Z676-181MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        | 125            | CY39165V208-125NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercial         |
|        |                | CY39165Z208-125NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39165V484-125BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165Z484-125BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165V388-125MGC | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39165Z388-125MGC | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39165V676-125MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165Z676-125MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165V208-125NTI | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Industrial         |
|        |                | CY39165Z208-125NI  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39165V484-125BBI | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165Z484-125BBI | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165V388-125MGI | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39165Z388-125MGI | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39165V676-125MBI | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165Z676-125MBI | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        | 83             | CY39165V208-83NTC  | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercial         |
|        |                | CY39165Z208-83NC   | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|        |                | CY39165V484-83BBC  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165Z484-83BBC  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165V388-83MGC  | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39165Z388-83MGC  | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|        |                | CY39165V676-83MBC  | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       | _                  |
|        |                | CY39165Z676-83MBC  | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165V208-83NTI  | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Industrial         |
|        |                | CY39165Z208-83NI   | N208            | 208-Lead Plastic Quad Flat Pack     |                       | _                  |
|        |                | CY39165V484-83BBI  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       | 1                  |
|        |                | CY39165Z484-83BBI  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|        |                | CY39165V388-83MGI  | MG388           | 388-Lead Ball Grid Array            |                       | 1                  |
|        |                | CY39165Z388-83MGI  | MG388           | 388-Lead Ball Grid Array            |                       | 1                  |
|        |                | CY39165V676-83MBI  | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       | 1                  |
|        |                | CY39165Z676-83MBI  | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       | 1                  |



| Device     | Speed<br>(MHz) | Ordering Code      | Package<br>Name | Package Type                        | Self-Boot<br>Solution | Operating<br>Range |
|------------|----------------|--------------------|-----------------|-------------------------------------|-----------------------|--------------------|
| 39K200 181 | 181            | CY39200V208-181NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercia          |
|            |                | CY39200Z208-181NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|            |                | CY39200V484-181BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200Z484-181BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200V388-181MGC | MG388           | 388-Lead Ball Grid Array            | $\checkmark$          |                    |
|            |                | CY39200Z388-181MGC | MG388           | 388-Lead Ball Grid Array            | $\checkmark$          |                    |
|            |                | CY39200V676-181MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array | $\checkmark$          |                    |
|            |                | CY39200Z676-181MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|            | 125            | CY39200V208-125NTC | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercia          |
|            |                | CY39200Z208-125NC  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|            |                | CY39200V484-125BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200Z484-125BBC | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200V388-125MGC | MG388           | 388-Lead Ball Grid Array            | $\checkmark$          | 1                  |
|            |                | CY39200Z388-125MGC | MG388           | 388-Lead Ball Grid Array            | $\checkmark$          | 1                  |
|            |                | CY39200V676-125MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200Z676-125MBC | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200V208-125NTI | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Industrial         |
|            |                | CY39200Z208-125NI  | N208            | 208-Lead Plastic Quad Flat Pack     |                       |                    |
|            |                | CY39200V484-125BBI | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200Z484-125BBI | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200V388-125MGI | MG388           | 388-Lead Ball Grid Array            |                       | -                  |
|            |                | CY39200Z388-125MGI | MG388           | 388-Lead Ball Grid Array            |                       | -                  |
|            |                | CY39200V676-125MBI | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200Z676-125MBI | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       | -                  |
| •          | 83             | CY39200V208-83NTC  | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Commercia          |
|            |                | CY39200Z208-83NC   | N208            | 208-Lead Plastic Quad Flat Pack     |                       | -                  |
|            |                | CY39200V484-83BBC  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       | -                  |
|            |                | CY39200Z484-83BBC  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200V388-83MGC  | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|            |                | CY39200Z388-83MGC  | MG388           | 388-Lead Ball Grid Array            |                       |                    |
|            |                | CY39200V676-83MBC  | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200Z676-83MBC  | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       |                    |
|            |                | CY39200V208-83NTI  | NT208           | 208-Lead Enhanced Quad Flat Pack    |                       | Industrial         |
|            |                | CY39200Z208-83NI   | N208            | 208-Lead Plastic Quad Flat Pack     |                       | -                  |
|            |                | CY39200V484-83BBI  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       | 1                  |
|            |                | CY39200Z484-83BBI  | BB484           | 484-Lead Fine Pitch Ball Grid Array |                       | 1                  |
|            |                | CY39200V388-83MGI  | MG388           | 388-Lead Ball Grid Array            |                       | 1                  |
|            |                | CY39200Z388-83MGI  | MG388           | 388-Lead Ball Grid Array            |                       | 1                  |
|            |                | CY39200V676-83MBI  | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       | 1                  |
|            |                | CY39200Z676-83MBI  | MB676           | 676-Lead Fine Pitch Ball Grid Array |                       | 1                  |

For the availability of Delta39KZ devices (1.8V), please contact your local sales office
Refer to the section titled "Delta39K100 Revisions/Errata" on page 49

# Delta39K100 Revisions/Errata

YPRESS

Three revisions of Delta39K100, in 3.3V version, are currently offered which are marked as CY39100Vxxx, CY39100VxxxA and CY39100VxxxB. CY39100VxxxB devices operate exactly as specified in this data sheet. The following paragraphs explain the operation of the CY39100Vxxx and CY39100VxxxA parts as different from this data sheet:

#### CY39100Vxxx

- 1. The internal regulator takes several seconds to power down. Hence, cycling the power supply (within 8 seconds) may cause a high standby current (200 mA to 1A) until the part is configured.
- The part always configures on power-up and will reconfigure on HIGH to LOW edge of the *Reconfig* pin. Please refer to the application note titled "Configuring Delta39K/Quantum38K" at http://www.cypress.com for more details.
- 3. The Self Config instruction starts reconfiguring the CPLD upon execution of the Update-IR state of the JTAG TAP controller state machine. In CY39100VxxxB parts, Self Config instruction is executed upon execution of Test-Log-ic-Reset state of the TAP controller.

4. An ESD failure is very unlikely. CDM ESD passes 1000V. HBM ESD passes 3300V with all I/O bank's V<sub>CCIO</sub> shorted together. If V<sub>CCIO</sub>s in a bank are tested separately a percentage of parts will fail HBM ESD over 500V.

### CY39100VxxxA

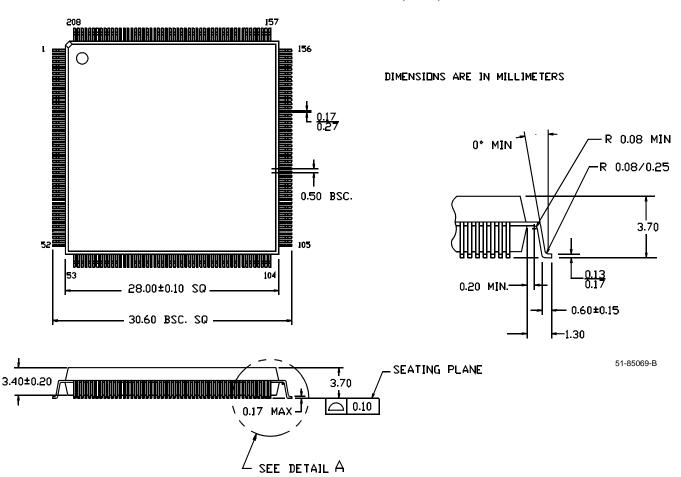
- The part always configures on power-up and will reconfigure on HIGH to LOW edge of the *Reconfig* pin. Please refer to the application note titled "Configuring Delta39K/Quantum38K" at http://www.cypress.com for more details.
- 2. The Self Config instruction starts reconfiguring the CPLD upon execution of the Update-IR state of the JTAG TAP controller state machine. In CY39100VxxxB parts, Self Config instruction is executed upon execution of Test-Log-ic-Reset state of the TAP controller.
- 3. An ESD failure is very unlikely. CDM ESD passes 1000V. HBM ESD passes 3300V with all I/O bank's V<sub>CCIO</sub> shorted together. If V<sub>CCIO</sub>s in a bank are tested separately a percentage of parts will fail HBM ESD over 500V.



| Device  | Speed<br>(MHz) | Ordering Code | Package<br>Name | Package Type                        | Operating<br>Range |
|---------|----------------|---------------|-----------------|-------------------------------------|--------------------|
| 2Mbit   | 15             | CY3LV002-10JC | 20J             | 20-Lead Plastic Leaded Chip Carrier | Commercial         |
|         | 10             | CY3LV002-10JC | 20J             | 20-Lead Plastic Leaded Chip Carrier | Industrial         |
| 1Mbit   | 15             | CY3LV010-10JC | 20J             | 20-Lead Plastic Leaded Chip Carrier | Commercial         |
|         | 10             | CY3LV010-10JI | 20J             | 20-Lead Plastic Leaded Chip Carrier | Industrial         |
| 512Kbit | 15             | CY3LV512-10JC | 20J             | 20-Lead Plastic Leaded Chip Carrier | Commercial         |
|         | 10             | CY3LV512-10JI | 20J             | 20-Lead Plastic Leaded Chip Carrier | Industrial         |

# **CPLD Boot EEPROM**<sup>[19]</sup> **Part Numbers (Ordering Information)**

# Recommended CPLD Boot EEPROM for corresponding Delta39K CPLDs


| CPLD Device | Recommended boot EEPROM |
|-------------|-------------------------|
| 39K30       | CY3LV512                |
| 39K50       | CY3LV512                |
| 39K100      | CY3LV010                |
| 39K165      | CY3LV002                |
| 39K200      | CY3LV002                |

Note:

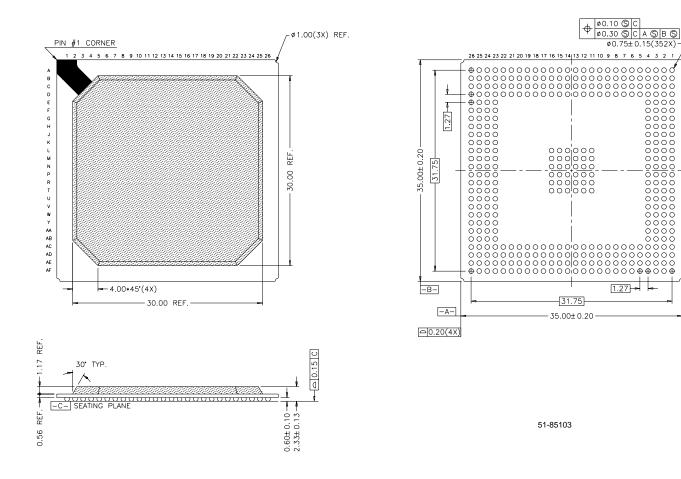
19. See the data sheet titled "CPLD Boot EEPROM" for detailed architectural and timing information.



# Package Diagrams



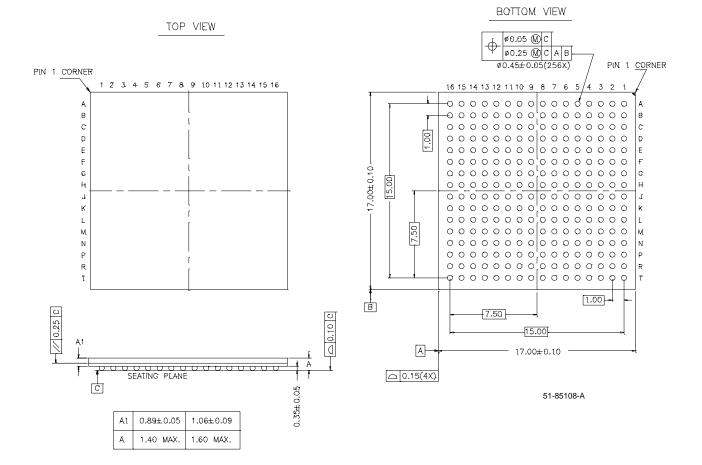
208-Lead Plastic Quad Flatpack (PQFP) N208 208-Lead Enhanced Quad Flat Pack (EQFP) NT208




B C D E F

GHJKLMNPRTUVWYAA BACADAE

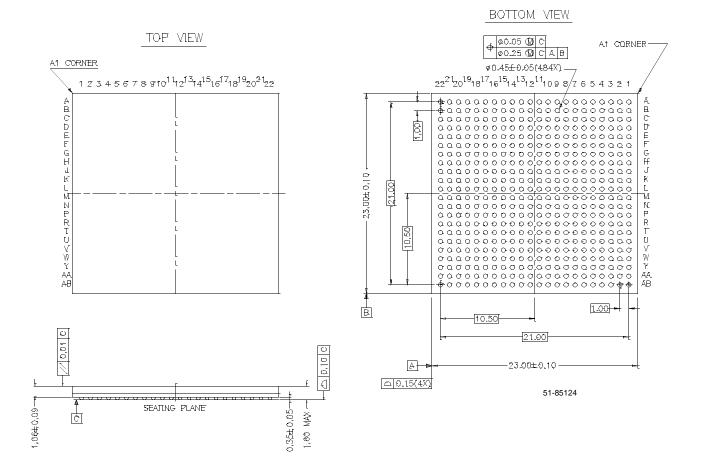
# Package Diagrams (continued)


### 388-Lead Ball Grid Array MG388





# Package Diagrams (continued)


#### 256-Ball Thin Ball Grid Array (17 x 17 x 1.6 mm) BB256/MB256





# Package Diagrams (continued)

#### 484-Ball Thin Ball Grid Array (23 x 23 x 1.6 mm) BB484/MB484





### Package Diagrams (continued)

#### 676-Ball FBGA (27 x 27 x 1.6 mm) BB676



NoBL, PIM, Spread Aware, AnyVolt, Self-Boot, In-System Cypress Semiconductor Corporation. Reprogrammable, ISR, and Delta39K are trademarks of

Warp is a registered trademark of Cypress Semiconductor Corporation.

Windows 95, Windows 98, and Windows NT are trademarks of Microsoft Corporation.

ZBT is a trademark of IDT. QDR is a trademark of Micron, IDT, and Cypress Semiconductor Corporation.

SpeedWave, and ViewDraw are trademarks of ViewLogic.

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.



\_ \_ . \_ .

| Docur<br>REV. | nent Numbe<br>ECN NO. | er: 38-03039<br>Issue Date | Orig. of Change | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|-----------------------|----------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **            | 106503                | 05/30/01                   | SZV             | Change from Spec #: 38-00830 to 38-03039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| *A            | 107625                | 07/11/01                   | RN              | Deleted 39K15 device and the associate -250 MHz bin specs.<br>Deleted 144FBGA package and associated part numbers.<br>Changed ESD spec from "MIL-STD-883" to "JEDEC EIA./JESD22-<br>A114-A ".<br>Changed the Prime bin for 39K50 & 39K30 from " MHz" to "233 MHz".<br>Changed the part ordering information accordingly.<br>Updated the -233 MHz timing specs to match modified timing specs<br>achieved by design (main affected params: t <sub>PD</sub> , t <sub>MCCO</sub> , t <sub>IOS</sub> , t <sub>SCS</sub> ,<br>t <sub>SCS2</sub> , f <sub>MAX2</sub> , t <sub>CLMAA</sub> , t <sub>CLMCYC2</sub> , t <sub>CHMCYC2</sub> , t <sub>CHMCYC4</sub> ).<br>Updated I/O standard Timing Delay Specs and changed the default I/O<br>standard from 3.3V PCI to LVCMOS.<br>Added paragraph about Delta39K being CompactPCI hot swap Ready.<br>Added X8 mode in the PLL description.<br>Added Standby ICC spec.<br>Updated the recommended boot PROM for 39K165/200 to be<br>CY3LV002 instead of CY3LV020. |